Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 137357, 10 pages
http://dx.doi.org/10.1155/2015/137357
Review Article

Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer’s Disease

1Oral & Dental Sciences Research Group, School of Medicine and Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
2Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA

Received 13 January 2015; Accepted 1 April 2015

Academic Editor: Elisabetta Buommino

Copyright © 2015 Sim K. Singhrao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Ohlrich, M. P. Cullinan, and G. J. Seymour, “The immunopathogenesis of periodontal disease,” Australian Dental Journal, vol. 54, no. s1, pp. S2–S10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Ghannad, D. Nica, M. I. G. Fulle et al., “Absence of αvβ6 integrin is linked to initiation and progression of periodontal disease,” The American Journal of Pathology, vol. 172, no. 5, pp. 1271–1286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Hajishengallis, R. P. Darveau, and M. A. Curtis, “The keystone-pathogen hypothesis,” Nature Reviews Microbiology, vol. 10, no. 10, pp. 717–725, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Hajishengallis, T. Abe, T. Maekawa, E. Hajishengallis, and J. D. Lambris, “Role of complement in host-microbe homeostasis of the periodontium,” Seminars in Immunology, vol. 25, no. 1, pp. 65–72, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. I. M. Velsko, S. S. Chukkapalli, M. F. Rivera et al., “Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis,” PLoS ONE, vol. 9, no. 5, Article ID e97811, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Poole, S. K. Singhrao, L. Kesavalu, M. A. Curtis, and S. Crean, “Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue,” Journal of Alzheimer's Disease, vol. 36, no. 4, pp. 665–677, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Poole, S. K. Singhrao, S. Chukkapalli et al., “Active invasion of an oral bacterium and infection-induced complement activation in ApoEnull mice brains,” Journal of Alzheimer's Disease, vol. 43, pp. 67–80, 2015. View at Google Scholar
  8. G. Hajishengallis, “The inflammophilic character of the periodontitis-associated microbiota,” Molecular Oral Microbiology, vol. 29, no. 6, pp. 248–257, 2014. View at Publisher · View at Google Scholar
  9. N. Dunn, M. Mullee, H. Perry, and C. Holmes, “Association between dementia and infectious disease: evidence from a case-control study,” Alzheimer Disease and Associated Disorders, vol. 19, no. 2, pp. 91–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. I. Mosher and T. Wyss-Coray, “Microglial dysfunction in brain aging and Alzheimer's disease,” Biochemical Pharmacology, vol. 88, no. 4, pp. 594–604, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. P. D. Marsh, “Dental plaque as a microbial biofilm,” Caries Research, vol. 38, no. 3, pp. 204–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. W. J. Loesche and D. E. Lopatin, “Interactions between periodontal disease, medical diseases and immunity in the older individual,” Periodontology 2000, vol. 16, no. 1, pp. 80–105, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. T. K. Fábián, P. Hermann, A. Beck, P. Fejérdy, and G. Fábián, “Salivary defense proteins: their network and role in innate and acquired oral immunity,” International Journal of Molecular Sciences, vol. 13, no. 4, pp. 4295–4320, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S.-U. Gorr and M. Abdolhosseini, “Antimicrobial peptides and periodontal disease,” Journal of Clinical Periodontology, vol. 38, no. 11, pp. 126–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. W. O. Chung and J. Y. An, “Periodontal disease and gingival innate immunity—who has the upper hand?” in Periodontal Diseases—A Clinician's Guide, J. Manakil, Ed., chapter 3, InTech, 2012. View at Publisher · View at Google Scholar
  16. Q. Lu, L. Jin, R. P. Darveau, and L. P. Samaranayake, “Expression of human β-defensins-1 and -2 peptides in unresolved chronic periodontitis,” Journal of Periodontal Research, vol. 39, no. 4, pp. 221–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. F. Kinane, P. Hodge, J. Eskdale, R. Ellis, and G. Gallagher, “Analysis of genetic polymorphisms at the interleukin-10 and tumour necrosis factor loci in early-onset periodontitis,” Journal of Periodontal Research, vol. 34, no. 7, pp. 379–386, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. M. F. Cole, S. P. Fitzsimmons, M. J. Sheridan, and Y. Xu, “Humoral immunity to commensal oral bacteria: Quantitation, specificity and avidity of serum IgG and IgM antibodies reactive with Actinobacillus actinomycetemcomitans in children,” Microbiology and Immunology, vol. 39, no. 8, pp. 591–598, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-F. Bu, X. Wang, Y.-Q. Zhu et al., “Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: role of macrophages and cathelicidin-related innate immunity,” Journal of Immunology, vol. 177, no. 12, pp. 8767–8776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Arenzana-Seisdedos, J. L. Virelizier, and W. Fiers, “Interferons as macrophage-activating factors. III. Preferential effects of interferon-γ on the interleukin 1 secretory potential of fresh or aged human monocytes,” The Journal of Immunology, vol. 134, no. 4, pp. 2444–2448, 1985. View at Google Scholar · View at Scopus
  21. M. A. Taubman and T. Kawai, “Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption,” Critical Reviews in Oral Biology & Medicine, vol. 12, no. 2, pp. 125–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Medzhitov, “Recognition of microorganisms and activation of the immune response,” Nature, vol. 449, no. 7164, pp. 819–826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Kumagai, O. Takeuchi, and S. Akira, “Pathogen recognition by innate receptors,” Journal of Infection and Chemotherapy, vol. 14, no. 2, pp. 86–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. S. Socransky and A. D. Haffajee, “The bacterial etiology of destructive periodontal disease: current concepts,” Journal of Periodontology, vol. 63, no. 4, pp. 322–331, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Brown and H. Löe, “Prevalence, extent, severity and progression of periodontal disease,” Periodontology 2000, vol. 2, pp. 57–71, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Loe, E. Theilade, and S. B. Jensen, “Experimental gingivitis in man,” Journal of Periodontology, vol. 36, pp. 177–187, 1965. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Lindhe, S. E. Hamp, and H. Loe, “Experimental periodontitis in the Beagle dog,” Journal of Periodontal Research, vol. 8, no. 1, pp. 1–10, 1973. View at Publisher · View at Google Scholar · View at Scopus
  28. D. N. Tatakis and L. Trombelli, “Modulation of clinical expression of plaque-induced gingivitis: I. Background review and rationale,” Journal of Clinical Periodontology, vol. 31, no. 4, pp. 229–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Trombelli, C. Scapoli, E. Orlandini, M. Tosi, S. Bottega, and D. N. Tatakis, “Modulation of clinical expression of plaque-induced gingivitis: III. Response of ‘high responders’ and ‘low responders’ to therapy,” Journal of Clinical Periodontology, vol. 31, no. 4, pp. 253–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Trombelli, “Susceptibility to gingivitis: a way to predict periodontal disease?” Oral Health and Preventive Dentistry, vol. 2, no. 1, pp. 265–269, 2004. View at Google Scholar · View at Scopus
  31. P. I. Eke, B. A. Dye, L. Wei, G. O. Thornton-Evans, and R. J. Genco, “Prevalence of periodontitis in adults in the united states: 2009 and 2010,” Journal of Dental Research, vol. 91, no. 10, pp. 914–920, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Kawai and S. Akira, “Pathogen recognition with Toll-like receptors,” Current Opinion in Immunology, vol. 17, no. 4, pp. 338–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Bielecka, C. Scavenius, T. Kantyka, M. Jusko, and D. Mizgalska, “Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity,” The Journal of Biological Chemistry, vol. 289, no. 47, pp. 32481–32487, 2014. View at Publisher · View at Google Scholar
  34. R. A. Reife, S. R. Coats, M. Al-Qutub et al., “Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition,” Cellular Microbiology, vol. 8, no. 5, pp. 857–868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Veith, G. H. Talbo, N. Slakeski et al., “Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50,” Biochemical Journal, vol. 363, no. 1, pp. 105–115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. P. Darveau, G. Hajishengallis, and M. A. Curtis, “Porphyromonas gingivalis as a potential community activist for disease,” Journal of Dental Research, vol. 91, no. 9, pp. 816–820, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Hajishengalis, “Complement and periodontitis,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1992–2001, 2010. View at Publisher · View at Google Scholar
  38. D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. C. Holt, L. Kesavalu, S. Walker, and C. A. Genco, “Virulence factors of Porphyromonas gingivalis,” Periodontology 2000, vol. 20, no. 1, pp. 168–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. O. N. Fong, K. Y. Y. Chan, K. T. Leung et al., “Expression profile of cord blood neutrophils and dysregulation of HSPA1A and OLR1 upon challenge by bacterial peptidoglycan,” Journal of Leukocyte Biology, vol. 95, no. 1, pp. 169–178, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. D. S. Kabanov and I. R. Prokhorenko, “Structural analysis of lipopolysaccharides from gram-negative bacteria,” Biochemistry (Moscow), vol. 75, no. 4, pp. 383–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Beutler, K. Hoebe, X. Du, and R. J. Ulevitch, “How we detect microbes and respond to them: the Toll-like receptors and their transducers,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 479–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Taubman, P. Valverde, X. Han, and T. Kawai, “Immune response: they key to bone resorption in periodontal disease,” Journal of Periodontology, vol. 76, no. 11, pp. 2033–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Rangarajan, J. Aduse-Opoku, N. Paramonov et al., “Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50,” Journal of Bacteriology, vol. 190, no. 8, pp. 2920–2932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. N. M. O'Brien-Simpson, P. D. Veith, S. G. Dashper, and E. C. Reynolds, “Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire,” Current Protein & Peptide Science, vol. 4, no. 6, pp. 409–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Sandholm, “Proteases and their inhibitors in chronic inflammatory periodontal disease,” Journal of Clinical Periodontology, vol. 13, no. 1, pp. 19–26, 1986. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Kocgozlu, R. Elkaim, H. Tenenbaum, and S. Werner, “Variable cell responses to P. gingivalis lipopolysaccharide,” Journal of Dental Research, vol. 88, no. 8, pp. 741–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. G. Daly, G. J. Seymour, and J. B. Kieser, “Bacterial endotoxin: a role in chronic inflammatory periodontal disease?” Journal of Oral Pathology & Medicine, vol. 9, no. 1, pp. 1–15, 1980. View at Publisher · View at Google Scholar · View at Scopus
  50. E. A. V. Moelants, G. Loozen, A. Mortier et al., “Citrullination and proteolytic processing of chemokines by Porphyromonas gingivalis,” Infection and Immunity, vol. 82, no. 6, pp. 2511–2519, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Travis, R. Pike, T. Imamura, and J. Potempa, “Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis,” Journal of Periodontal Research, vol. 32, no. 1, pp. 120–125, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Imamura, “The role of gingipains in the pathogenesis of periodontal disease,” Journal of Periodontology, vol. 74, no. 1, pp. 111–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Miyachi, K. Ishihara, R. Kimizuka, and K. Okuda, “Arg-gingipain a DNA vaccine prevents alveolar bone loss in mice,” Journal of Dental Research, vol. 86, no. 5, pp. 446–450, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Thiemermann, “Interactions between lipoteichoic acid and peptidoglycan from Staphylococcus aureus: a structural and functional analysis,” Microbes and Infection, vol. 4, no. 9, pp. 927–935, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. Ghuysen, “Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism,” Bacteriological Reviews, vol. 32, no. 4, pp. 425–464, 1968. View at Google Scholar · View at Scopus
  56. J.-M. Ghuysen and J. L. Strominger, “Sturcture of the cell wall of Staphylococcus aureus, strain copenhages. II. Separation and structure of disaccharides,” Biochemistry, vol. 2, no. 5, pp. 1119–1125, 1963. View at Publisher · View at Google Scholar
  57. T. Balamayooran, G. Balamayooran, and S. Jeyaseelan, “Toll-like receptors and NOD-like receptors in pulmonary antibacterial immunity,” Innate Immunity, vol. 16, no. 3, pp. 201–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. A.-K. Ekman and L. O. Cardell, “The expression and function of Nod-like receptors in neutrophils,” Immunology, vol. 130, no. 1, pp. 55–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Kumar, T. Kawai, and S. Akira, “Pathogen recognition in the innate immune response,” Biochemical Journal, vol. 420, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. T. Sorbara and D. J. Philpott, “Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis,” Immunological Reviews, vol. 243, no. 1, pp. 40–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. H. A. Schenkein, “Failure of Bacteroides gingivalis W83 to accumulate bound C3 following opsonization with serum,” Journal of Periodontal Research, vol. 24, no. 1, pp. 20–27, 1989. View at Publisher · View at Google Scholar · View at Scopus
  62. R. J. Lamont and H. F. Jenkinson, “Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1244–1263, 1998. View at Google Scholar · View at Scopus
  63. M. Potempa, J. Potempa, M. Okroj et al., “Binding of complement inhibitor C4b-binding protein contributes to serum resistance of Porphyromonas gingivalis,” The Journal of Immunology, vol. 181, no. 8, pp. 5537–5544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Mahtout, F. Chandad, J. M. Rojo, and D. Grenier, “Porphyromonas gingivalis mediates the shedding and proteolysis of complement regulatory protein CD46 expressed by oral epithelial cells,” Oral Microbiology and Immunology, vol. 24, no. 5, pp. 396–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Potempa and R. N. Pike, “Corruption of innate immunity by bacterial proteases,” Journal of Innate Immunity, vol. 1, no. 2, pp. 70–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Belstrøm, P. Holmstrup, C. Damgaard et al., “The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes,” Infection and Immunity, vol. 79, no. 4, pp. 1559–1565, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Slaney, A. Gallagher, J. Aduse-Opoku, K. Pell, and M. A. Curtis, “Mechanisms of resistance of Porphyromonas gingivalis to killing by serum complement,” Infection and Immunity, vol. 74, no. 9, pp. 5352–5361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. S. Socransky and A. D. Haffajee, “Dental biofilms: difficult therapeutic targets,” Periodontology 2000, vol. 28, no. 1, pp. 12–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. S. A. Thompson, “Campylobacter surface-layers (S-layers) and immune evasion,” Annals of Periodontology, vol. 7, no. 1, pp. 43–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. J. V. Mcdowell, J. Frederick, D. P. Miller et al., “Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola,” Molecular Oral Microbiology, vol. 26, no. 2, pp. 140–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Shimotahira, Y. Oogai, M. Kawada-Matsuo et al., “The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation,” Infection and Immunity, vol. 81, no. 4, pp. 1198–1206, 2013. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Popadiak, J. Potempa, K. Riesbeck, and A. M. Blom, “Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system,” The Journal of Immunology, vol. 178, no. 11, pp. 7242–7250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. T. D. K. Herath, R. P. Darveau, C. J. Seneviratne, C.-Y. Wang, Y. Wang, and L. Jin, “Tetra- and penta-acylated lipid A strucures of Porphyromonas gingivlis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immune-inflammaory response in human gingival fibroblasts,” PLoS ONE, vol. 8, no. 3, Article ID e58496, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Forner, T. Larsen, M. Kilian, and P. Holmstrup, “Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation,” Journal of Clinical Periodontology, vol. 33, no. 6, pp. 401–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Savarrio, D. Mackenzie, M. Riggio, W. P. Saunders, and J. Bagg, “Detection of bacteraemias during non-surgical root canal treatment,” Journal of Dentistry, vol. 33, no. 4, pp. 293–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. C. G. Daly, D. H. Mitchell, J. E. Highfield, D. E. Grossberg, and D. Stewart, “Bacteremia due to periodontal probing: a clinical and microbiological investigation,” Journal of Periodontology, vol. 72, no. 2, pp. 210–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Tomás, M. Álvarez, J. Limeres, C. Potel, J. Medina, and P. Diz, “Prevalence, duration and aetiology of bacteraemia following dental extractions,” Oral Diseases, vol. 13, no. 1, pp. 56–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. K. J. Mattila, M. S. Nieminen, V. V. Valtonen et al., “Association between dental health and acute myocardial infarction,” British Medical Journal, vol. 298, no. 6676, pp. 779–781, 1989. View at Publisher · View at Google Scholar · View at Scopus
  79. F. DeStefano, R. F. Anda, H. S. Kahn, D. F. Williamson, and C. M. Russell, “Dental disease and risk of coronary heart disease and mortality,” British Medical Journal, vol. 306, no. 6879, pp. 688–691, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. P. B. Lockhart, A. F. Bolger, P. N. Papapanou et al., “Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association,” Circulation, vol. 125, no. 20, pp. 2520–2544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Bascones-Martinez, P. Matesanz-Perez, M. Escribano-Bermejo, M.-Á. González-Moles, J. Bascones-Ilundain, and J.-H. Meurman, “Periodontal disease and diabetes—review of the literature,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 16, no. 6, pp. 722–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. A. Scannapieco, G. D. Papandonatos, and R. G. Dunford, “Associations between oral conditions and respiratory disease in a national sample survey population,” Annals of Periodontology, vol. 3, no. 1, pp. 251–256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  83. F. A. Scannapieco, “Role of oral bacteria in respiratory infection,” Journal of Periodontology, vol. 70, no. 7, pp. 793–802, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Tolo and L. Jorkjend, “Serum antibodies and loss of periodontal bone in patients with rheumatoid arthritis,” Journal of Clinical Periodontology, vol. 17, no. 5, pp. 288–291, 1990. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Gleissner, B. Willershausen, U. Kaesser, and W. W. Bolten, “The role of risk factors for periodontal disease in patients with rheumatoid arthritis,” European Journal of Medical Research, vol. 3, no. 8, pp. 387–392, 1998. View at Google Scholar · View at Scopus
  86. M. K. Jeffcoat, “Osteoporosis: a possible modifying factor in oral bone loss,” Annals of Periodontology, vol. 3, no. 1, pp. 312–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Suvan, F. D'Aiuto, D. R. Moles, A. Petrie, and N. Donos, “Association between overweight/obesity and periodontitis in adults. A systematic review,” Obesity Reviews, vol. 12, no. 501, pp. e381–e404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Offenbacher, H. L. Jared, P. G. O'Reilly et al., “Potential pathogenic mechanisms of periodontitis associated pregnancy complications,” Annals of Periodontology, vol. 3, no. 1, pp. 233–250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Offenbacher, V. Katz, G. Fertik et al., “Periodontal infection as a possible risk factor for preterm low birth weight,” Journal of Periodontology, vol. 67, no. 10, pp. 1103–1113, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Jeffcoat, S. Parry, M. Sammel, B. Clothier, A. Catlin, and G. MacOnes, “Periodontal infection and preterm birth: successful periodontal therapy reduces the risk of preterm birth,” BJOG, vol. 118, no. 2, pp. 250–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Riviere, K. H. Riviere, and K. S. Smith, “Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease,” Oral Microbiology and Immunology, vol. 17, no. 2, pp. 113–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. P. S. Stein, M. Desrosiers, S. J. Donegan, J. F. Yepes, and R. J. Kryscio, “Tooth loss, dementia and neuropathology in the Nun Study,” The Journal of the American Dental Association, vol. 138, no. 10, pp. 1314–1322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. A. R. Kamer, R. G. Craig, E. Pirraglia et al., “TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects,” Journal of Neuroimmunology, vol. 216, no. 1-2, pp. 92–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Q. Trojanowski, M. L. Schmidt, R.-W. Shin, G. T. Bramblett, D. Rao, and V. M.-Y. Lee, “Altered tau and neurofilament proteins in neuro-degenerative diseases: diagnostic implications for alzheimer's disease and lewy body dementias,” Brain Pathology, vol. 3, no. 1, pp. 45–54, 1993. View at Publisher · View at Google Scholar · View at Scopus
  96. R. D. Terry, E. Masliah, D. P. Salmon et al., “Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment,” Annals of Neurology, vol. 30, no. 4, pp. 572–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Masliah, A. Miller, and R. D. Terry, “The synaptic organization of the neocortex in Alzheimer's disease,” Medical Hypotheses, vol. 41, no. 4, pp. 334–340, 1993. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimers disease,” Inflammation and Alzheimer's disease, vol. 21, no. 3, pp. 383–421, 2000. View at Google Scholar
  99. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Holmes, M. El-Okl, A. L. Williams, C. Cunningham, D. Wilcockson, and V. H. Perry, “Systemic infection, interleukin 1β, and cognitive decline in Alzheimer's disease,” Journal of Neurology Neurosurgery & Psychiatry, vol. 74, no. 6, pp. 788–789, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Holmes, C. Cunningham, E. Zotova et al., “Systemic inflammation and disease progression in Alzheimer disease,” Neurology, vol. 73, no. 10, pp. 768–774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. A. R. Kamer, R. G. Craig, A. P. Dasanayake, M. Brys, L. Glodzik-Sobanska, and M. J. de Leon, “Inflammation and Alzheimer's disease: possible role of periodontal diseases,” Alzheimer's & Dementia, vol. 4, no. 4, pp. 242–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. B. J. Balin, C. S. Little, C. J. Hammond et al., “Chlamydophila pneumoniae and the etiology of late-onset Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 371–380, 2008. View at Google Scholar · View at Scopus
  104. R. F. Itzhaki and M. A. Wozniak, “Herpes simplex virus type 1 in Alzheimer's disease: the enemy within,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 393–405, 2008. View at Google Scholar · View at Scopus
  105. J. Miklossy, “Chronic inflammation and amyloidogenesis in Alzheimer's disease—role of spirochetes,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 381–391, 2008. View at Google Scholar · View at Scopus
  106. J. C. Lambert, S. Heath, G. Even et al., “Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease,” Nature Genetics, vol. 41, no. 10, pp. 1094–1099, 2009. View at Publisher · View at Google Scholar
  107. D. Harold, R. Abraham, P. Hollingworth et al., “Erratum: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease,” Nature Genetics, vol. 41, no. 10, p. 1156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. S. J. Soscia, J. E. Kirby, K. J. Washicosky et al., “The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide,” PLoS ONE, vol. 5, no. 3, Article ID e9505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Zaiou, “Multifunctional antimicrobial peptides: therapeutic targets in several human diseases,” Journal of Molecular Medicine, vol. 85, no. 4, pp. 317–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Slots and R. J. Genco, “Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction,” Journal of Dental Research, vol. 63, no. 3, pp. 412–421, 1984. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Slots and M. A. Listgarten, “Bacteroides gingivalis, bacteroides intermedius and actinobacillus actinomycetemcomitans in human periodontal diseases,” Journal of Clinical Periodontology, vol. 15, no. 2, pp. 85–93, 1988. View at Publisher · View at Google Scholar · View at Scopus
  112. S. K. Singhrao, A. Harding, T. Simmons, S. Robinson, L. Kesavalu, and S. Crean, “Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 42, no. 3, pp. 723–737, 2014. View at Google Scholar
  113. U.-K. Hanisch, “Microglia as a source and target of cytokines,” Glia, vol. 40, no. 2, pp. 140–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. B. P. Morgan and P. Gasque, “Expression of complement in the brain: role in health and disease,” Immunology Today, vol. 17, no. 10, pp. 461–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Matsushita, S. Thiel, J. C. Jensenius, I. Terai, and T. Fujita, “Proteolytic activities of two types of mannose-binding lectin-associated serine protease,” The Journal of Immunology, vol. 165, no. 5, pp. 2637–2642, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. S. K. Singhrao, J. W. Neal, B. P. Morgan, and P. Gasque, “Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease,” Experimental Neurology, vol. 159, no. 2, pp. 362–376, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, “Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis,” The American Journal of Pathology, vol. 157, no. 3, pp. 905–918, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. P. S. Sparks Stein, M. J. Steffen, C. Smith et al., “Serum antibodies to periodontal pathogens are a risk factor for Alzheimer's disease,” Alzheimer's and Dementia, vol. 8, no. 3, pp. 196–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Okuda, T. Kato, Y. Naito, M. Ono, Y. Kikuchi, and I. Takazoe, “Susceptibility of Bacteroides gingivalis to bactericidal activity of human serum,” Journal of Dental Research, vol. 65, no. 7, pp. 1024–1027, 1986. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Holmes, D. Boche, D. Wilkinson et al., “Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial,” The Lancet, vol. 372, no. 9634, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. R. O. Weller, D. Boche, and J. A. R. Nicoll, “Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy,” Acta Neuropathologica, vol. 118, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Laflamme and S. Rivest, “Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components,” The FASEB Journal, vol. 15, no. 1, pp. 155–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. J. K. Olson and S. D. Miller, “Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs,” The Journal of Immunology, vol. 173, no. 6, pp. 3916–3924, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Gasque, “Complement: a unique innate immune sensor for danger signals,” Molecular Immunology, vol. 41, no. 11, pp. 1089–1098, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Qin, G. Li, X. Qian et al., “Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation,” Glia, vol. 52, no. 1, pp. 78–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. E. van Exel, P. Eikelenboom, H. Comijis et al., “Vascular factors and markers of inflammation in offspring with a parental history of late-onset Alzheimer disease,” Archives of General Psychiatry, vol. 66, no. 11, pp. 1263–1270, 2009. View at Publisher · View at Google Scholar · View at Scopus