Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 373070, 6 pages
http://dx.doi.org/10.1155/2015/373070
Research Article

Effects on Serum Fractalkine by Diet and Omega-3 Fatty Acid Intervention: Relation to Clinical Outcome

1Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424 Oslo, Norway
2Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316 Oslo, Norway
3Center for Heart Failure Research, Institute for Experimental Medical Research, Oslo University Hospital, Ullevål, Kirkeveien 166, 0407 Oslo, Norway
4Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Postboks 4950 Nydalen, 0424 Oslo, Norway

Received 27 November 2014; Accepted 20 January 2015

Academic Editor: Fulvio D’Acquisto

Copyright © 2015 Kristian Laake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Libby, “Inflammation in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2045–2051, 2012. View at Publisher · View at Google Scholar
  2. J. F. Bazan, K. B. Bacon, G. Hardiman et al., “A new class of membrane-bound chemokine with a CX3C motif,” Nature, vol. 385, no. 6617, pp. 640–642, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Imai, K. Hieshima, C. Haskell et al., “Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion,” Cell, vol. 91, no. 4, pp. 521–530, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Imaizumi, H. Yoshida, and K. Satoh, “Regulation of CX3CL1/fractalkine expression in endothelial cells,” Journal of Atherosclerosis and Thrombosis, vol. 11, no. 1, pp. 15–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Umehara, E. T. Bloom, T. Okazaki, Y. Nagano, O. Yoshie, and T. Imai, “Fractalkine in vascular biology: from basic research to clinical disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1, pp. 34–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. Jones, M. Beamer, and S. Ahmed, “Fractalkine/CX3CL1: a potential new target for inflammatory diseases,” Molecular Interventions, vol. 10, no. 5, pp. 263–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Combadière, S. Potteaux, J.-L. Gao et al., “Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice,” Circulation, vol. 107, no. 7, pp. 1009–1016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Lesnik, C. A. Haskell, and I. F. Charo, “Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis,” Journal of Clinical Investigation, vol. 111, no. 3, pp. 333–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. B. W. C. Wong, D. Wong, and B. M. McManus, “Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease,” Cardiovascular Pathology, vol. 11, no. 6, pp. 332–338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. G. E. White, T. C. C. Tan, A. E. John, C. Whatling, W. L. McPheat, and D. R. Greaves, “Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling,” Cardiovascular Research, vol. 85, no. 4, pp. 825–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. McDermott, J. P. J. Halcox, W. H. Schenke et al., “Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis,” Circulation Research, vol. 89, no. 5, pp. 401–407, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Damås, A. Boullier, T. Wæhre et al., “Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 12, pp. 2567–2572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Richter, L. Koller, P. J. Hohensinner et al., “Fractalkine is an independent predictor of mortality in patients with advanced heart failure,” Thrombosis and Haemostasis, vol. 108, no. 6, pp. 1220–1227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Xueyao, Z. Saifei, Y. Dan et al., “Circulating fractalkine levels predict the development of the metabolic syndrome,” International Journal of Endocrinology, vol. 2014, Article ID 715148, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. I. U. Njerve, A. Å. Pettersen, T. B. Opstad, H. Arnesen, and I. Seljeflot, “Fractalkine and its receptor (CX3CR1) in patients with stable coronary artery disease and diabetes mellitus,” Metabolic Syndrome and Related Disorders, vol. 10, no. 6, pp. 400–406, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Dragomir, I. Manduteanu, M. Calin et al., “High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells,” Thrombosis and Haemostasis, vol. 100, no. 6, pp. 1155–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Burr, A. M. Fehily, J. F. Gilbert et al., “Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART),” The Lancet, vol. 2, no. 8666, pp. 757–761, 1989. View at Google Scholar · View at Scopus
  18. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico), “Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial,” The Lancet, vol. 354, no. 9177, pp. 447–455, 1999. View at Google Scholar
  19. L. Tavazzi, A. P. Maggioni, R. Marchioli et al., “Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 372, no. 9645, pp. 1223–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. de Caterina, “n-3 fatty acids in cardiovascular disease,” The New England Journal of Medicine, vol. 364, no. 25, pp. 2439–2450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. de Lorgeril, P. Salen, J.-L. Martin, I. Monjaud, J. Delaye, and N. Mamelle, “Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study,” Circulation, vol. 99, no. 6, pp. 779–785, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. T. A. Mori and L. J. Beilin, “Omega-3 fatty acids and inflammation,” Current Atherosclerosis Reports, vol. 6, no. 6, pp. 461–467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Adkins and D. S. Kelley, “Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids,” Journal of Nutritional Biochemistry, vol. 21, no. 9, pp. 781–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. B. Schmidt, H. Arnesen, R. de Caterina, L. H. Rasmussen, and S. D. Kristensen, “Marine n-3 polyunsaturated fatty acids and coronary heart disease: part I. Background, epidemiology, animal data, effects on risk factors and safety,” Thrombosis Research, vol. 115, no. 3, pp. 163–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Urpi-Sarda, R. Casas, G. Chiva-Blanch et al., “Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to atherosclerosis,” Pharmacological Research, vol. 65, no. 6, pp. 577–583, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-O. Moon, W. Kim, J. S. Mi et al., “Resveratrol suppresses tumor necrosis factor-α-induced fractalkine expression in endothelial cells,” Molecular Pharmacology, vol. 70, no. 1, pp. 112–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Hjerkinn, M. Abdelnoor, L. Breivik et al., “Effect of diet or very long chain ω-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima-media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 13, no. 3, pp. 325–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Hjermann, K. Velve Byre, I. Holme, and P. Leren, “Effect of diet and smoking intervention on the incidence of coronary heart disease. Report from the Oslo Study Group of a randomised trial in healthy men,” The Lancet, vol. 2, no. 8259, pp. 1303–1310, 1981. View at Google Scholar · View at Scopus
  29. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. D. H. McDermott, A. M. Fong, Q. Yang et al., “Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans,” The Journal of Clinical Investigation, vol. 111, no. 8, pp. 1241–1250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. G. A. Chapman, K. E. Moores, J. Gohil et al., “The role of fractalkine in the recruitment of monocytes to the endothelium,” European Journal of Pharmacology, vol. 392, no. 3, pp. 189–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Umehara, S. Goda, T. Imai et al., “Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1,” Immunology and Cell Biology, vol. 79, no. 3, pp. 298–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Rius, C. Company, L. Piqueras et al., “Critical role of fractalkine (CX3CL1) in cigarette smoke-induced mononuclear cell adhesion to the arterial endothelium,” Thorax, vol. 68, no. 2, pp. 177–186, 2013. View at Publisher · View at Google Scholar · View at Scopus