Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015, Article ID 690243, 11 pages
http://dx.doi.org/10.1155/2015/690243
Review Article

NLRP3 Inflammasome: Activation and Regulation in Age-Related Macular Degeneration

Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 3N9

Received 19 September 2014; Accepted 15 December 2014

Academic Editor: Benedicte Py

Copyright © 2015 Jiangyuan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ambati, J. P. Atkinson, and B. D. Gelfand, “Immunology of age-related macular degeneration,” Nature Reviews Immunology, vol. 13, no. 6, pp. 438–451, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. World-Health-Organization, “Age-related macular degeneration,” in Prevention of Blindness and Visual Impairment—Priority Eye Diseases, World-Health-Organization, 2014, http://www.who.int/blindness/causes/priority/en/index7.html. View at Google Scholar
  3. Access-Economics, “The global economic cost of visual impairment,” http://www.icoph.org/resources/146/The-Global-Economic-Cost-of-Visual-Impairment.html.
  4. D. S. Friedman, J. Katz, N. M. Bressler, B. Rahmani, and J. M. Tielsch, “Racial differences in the prevalence of age-related macular degeneration: the Baltimore Eye Survey,” Ophthalmology, vol. 106, no. 6, pp. 1049–1055, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. K. J. Cruickshanks, R. Klein, and B. F. K. Klein, “Sunlight and age-related macular degeneration. The Beaver Dam Eye Study,” Archives of Ophthalmology, vol. 111, no. 4, pp. 514–518, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. J. R. Vingerling, I. Dielemans, A. Hofman et al., “The prevalence of age-related maculopathy in the Rotterdam study,” Ophthalmology, vol. 102, no. 2, pp. 205–210, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. D. S. Friedman, B. J. O'Colmain, B. Muñoz et al., “Prevalence of age-related macular degeneration in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 564–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Age-Related Eye Disease Study Research Group, “A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8,” Archives of Ophthalmology, vol. 119, no. 10, pp. 1417–1436, 2001. View at Publisher · View at Google Scholar
  9. “Age-related eye disease study 2 research G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial,” The Journal of the American Medical Association, vol. 309, no. 19, pp. 2005–2015, 2013. View at Publisher · View at Google Scholar
  10. E. Y. Chew, T. E. Clemons, E. Agrón et al., “Long-term effects of vitamins C and E, β-carotene, and zinc on age-related macular degeneration: AREDS Report No. 35,” Ophthalmology, vol. 120, no. 8, pp. 1604.e4–1611.e4, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Woodell and B. Rohrer, “A mechanistic review of cigarette smoke and age-related macular degeneration,” in Retinal Degenerative Diseases, vol. 801 of Advances in Experimental Medicine and Biology, pp. 301–307, Springer, New York, NY, USA, 2014. View at Publisher · View at Google Scholar
  12. S. L. Fine, J. W. Berger, M. G. Maguire, and A. C. Ho, “Age-related macular degeneration,” The New England Journal of Medicine, vol. 342, no. 7, pp. 483–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Boulton and P. Dayhaw-Barker, “The role of the retinal pigment epithelium: topographical variation and ageing changes,” Eye, vol. 15, part 3, pp. 384–389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Strauss, “The retinal pigment epithelium in visual function,” Physiological Reviews, vol. 85, no. 3, pp. 845–881, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. Anderson, R. F. Mullins, G. S. Hageman, and L. V. Johnson, “A role for local inflammation in the formation of drusen in the aging eye,” American Journal of Ophthalmology, vol. 134, no. 3, pp. 411–431, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Klein, F. L. Ferris III, J. Armstrong et al., “Retinal precursors and the development of geographic atrophy in age-related macular degeneration,” Ophthalmology, vol. 115, no. 6, pp. 1026–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. A. Tseng, T. Thein, K. Kinnunen et al., “NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 54, no. 1, pp. 110–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Doyle, M. Campbell, E. Ozaki et al., “NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components,” Nature Medicine, vol. 18, no. 5, pp. 791–798, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. R. T. Liu, A. Wang, E. To et al., “Vinpocetine inhibits amyloid-β induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells,” Experimental Eye Research, vol. 127, pp. 49–58, 2014. View at Publisher · View at Google Scholar
  20. N. Kerur, Y. Hirano, V. Tarallo et al., “TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy,” Investigative Ophthalmology & Visual Science, vol. 54, no. 12, pp. 7395–7401, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. O. A. Anderson, A. Finkelstein, and D. T. Shima, “A2E induces IL-1ss production in retinal pigment epithelial cells via the NLRP3 inflammasome,” PLoS ONE, vol. 8, no. 6, Article ID e67263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kauppinen, H. Niskanen, T. Suuronen, K. Kinnunen, A. Salminen, and K. Kaarniranta, “Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-implications for age-related macular degeneration (AMD),” Immunology Letters, vol. 147, no. 1-2, pp. 29–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Asgari, G. Le Friec, H. Yamamoto et al., “C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation,” Blood, vol. 122, no. 20, pp. 3473–3481, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Laudisi, R. Spreafico, M. Evrard et al., “Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release,” Journal of Immunology, vol. 191, no. 3, pp. 1006–1010, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. B. F. Py, M.-S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan, “Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity,” Molecular Cell, vol. 49, no. 2, pp. 331–338, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Rodgers, J. W. Bowman, H. Fujita et al., “The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation,” The Journal of Experimental Medicine, vol. 211, no. 7, pp. 1333–1347, 2014. View at Publisher · View at Google Scholar
  28. S. Camelo, “Potential sources and roles of adaptive immunity in age-related macular degeneration: shall we rename AMD into autoimmune macular disease?” Autoimmune Diseases, vol. 2014, Article ID 532487, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Iannaccone, I. Neeli, P. Krishnamurthy et al., “Autoimmune biomarkers in age-related macular degeneration: a possible role player in disease development and progression,” Advances in Experimental Medicine and Biology, vol. 723, pp. 11–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Menu and J. E. Vince, “The NLRP3 inflammasome in health and disease: the good, the bad and the ugly,” Clinical and Experimental Immunology, vol. 166, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Lamkanfi, L. V. Walle, and T.-D. Kanneganti, “Deregulated inflammasome signaling in disease,” Immunological Reviews, vol. 243, no. 1, pp. 163–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. B. K. Davis, H. Wen, and J. P.-Y. Ting, “The Inflammasome NLRs in immunity, inflammation, and associated diseases,” Annual Review of Immunology, vol. 29, pp. 707–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Franchi, T. Eigenbrod, R. Muñoz-Planillo, and G. Nuñez, “The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis,” Nature Immunology, vol. 10, no. 3, pp. 241–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Lamkanfi and V. M. Dixit, “Mechanisms and functions of inflammasomes,” Cell, vol. 157, no. 5, pp. 1013–1022, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Kayagaki, S. Warming, M. Lamkanfi et al., “Non-canonical inflammasome activation targets caspase-11,” Nature, vol. 479, no. 7371, pp. 117–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. E. Lawlor and J. E. Vince, “Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria?” Biochimica et Biophysica Acta—General Subjects, vol. 1840, no. 4, pp. 1433–1440, 2014. View at Publisher · View at Google Scholar
  37. F. S. Sutterwala, S. Haasken, and S. L. Cassel, “Mechanism of NLRP3 inflammasome activation,” Annals of the New York Academy of Sciences, vol. 1319, no. 1, pp. 82–95, 2014. View at Publisher · View at Google Scholar
  38. F. G. Bauernfeind, G. Horvath, A. Stutz et al., “Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression,” The Journal of Immunology, vol. 183, no. 2, pp. 787–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. L. Doyle, E. Ozaki, K. Brennan et al., “IL-18 attenuates experimental choroidal neovascularization as a potential therapy for wet age-related macular degeneration,” Science Translational Medicine, vol. 6, no. 230, Article ID 230ra44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Tarallo, Y. Hirano, B. D. Gelfand et al., “DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88,” Cell, vol. 149, no. 4, pp. 847–859, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Juliana, T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E. S. Alnemri, “Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation,” Journal of Biological Chemistry, vol. 287, no. 43, pp. 36617–36622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. F. di Virgilio, “The therapeutic potential of modifying inflammasomes and NOD-like receptors,” Pharmacological Reviews, vol. 65, no. 3, pp. 872–905, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Muñoz-Planillo, P. Kuffa, G. Martínez-Colón, B. L. Smith, T. M. Rajendiran, and G. Núñez, “K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter,” Immunity, vol. 38, no. 6, pp. 1142–1153, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Hornung, F. Bauernfeind, A. Halle et al., “Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization,” Nature Immunology, vol. 9, no. 8, pp. 847–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria in NLRP3 inflammasome activation,” Nature, vol. 469, no. 7329, pp. 221–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Misawa, M. Takahama, T. Kozaki et al., “Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome,” Nature Immunology, vol. 14, no. 5, pp. 454–460, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. J. W. Crabb, M. Miyagi, X. Gu et al., “Drusen proteome analysis: an approach to the etiology of age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 14682–14687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. R. F. Mullins, S. R. Russell, D. H. Anderson, and G. S. Hageman, “Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease,” The FASEB Journal, vol. 14, no. 7, pp. 835–846, 2000. View at Google Scholar · View at Scopus
  49. G. S. Hageman, P. J. Luthert, N. H. V. Chong, L. V. Johnson, D. H. Anderson, and R. F. Mullins, “An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration,” Progress in Retinal and Eye Research, vol. 20, no. 6, pp. 705–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. L. V. Johnson, W. P. Leitner, M. K. Staples, and D. H. Anderson, “Complement activation and inflammatory processes in drusen formation and age related macular degeneration,” Experimental Eye Research, vol. 73, no. 6, pp. 887–896, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. L. V. Johnson, W. P. Leitner, A. J. Rivest, M. K. Staples, M. J. Radeke, and D. H. Anderson, “The Alzheimer's A β-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11830–11835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Nozaki, B. J. Raisler, E. Sakurai et al., “Drusen complement components C3a and C5a promote choroidal neovascularization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2328–2333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Dentchev, A. H. Milam, V. M. Y. Lee, J. Q. Trojanowski, and J. L. Dunaief, “Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas,” Molecular Vision, vol. 9, pp. 184–190, 2003. View at Google Scholar · View at Scopus
  54. V. Luibl, J. M. Isas, R. Kayed, C. G. Glabe, R. Langen, and J. Chen, “Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 378–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Mevorach, “Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system,” Apoptosis, vol. 15, no. 9, pp. 1114–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. D. H. Anderson, M. J. Radeke, N. B. Gallo et al., “The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited,” Progress in Retinal and Eye Research, vol. 29, no. 2, pp. 95–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Khandhadia, V. Cipriani, J. R. W. Yates, and A. J. Lotery, “Age-related macular degeneration and the complement system,” Immunobiology, vol. 217, no. 2, pp. 127–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Triantafilou, T. R. Hughes, M. Triantafilou, and P. Morgan, “The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation,” Journal of Cell Science, vol. 126, no. 13, pp. 2903–2913, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. D. H. Anderson, K. C. Talaga, A. J. Rivest, E. Barron, G. S. Hageman, and L. V. Johnson, “Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration,” Experimental Eye Research, vol. 78, no. 2, pp. 243–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. J. M. Isas, V. Luibl, L. V. Johnson et al., “Soluble and mature amyloid fibrils in drusen deposits,” Investigative Ophthalmology and Visual Science, vol. 51, no. 3, pp. 1304–1310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Iwata, S. Tsubuki, Y. Takaki et al., “Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition,” Nature Medicine, vol. 6, no. 2, pp. 143–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Madani, R. Poirier, D. P. Wolfer et al., “Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivo,” Journal of Neuroscience Research, vol. 84, no. 8, pp. 1871–1878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Kayed, E. Head, J. L. Thompson et al., “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis,” Science, vol. 300, no. 5618, pp. 486–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. D. M. Walsh, I. Klyubin, J. V. Fadeeva et al., “Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo,” Nature, vol. 416, no. 6880, pp. 535–539, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. W. L. Klein, G. A. Krafft, and C. E. Finch, “Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum?” Trends in Neurosciences, vol. 24, no. 4, pp. 219–224, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. M. D. Kirkitadze, G. Bitan, and D. B. Teplow, “Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies,” Journal of Neuroscience Research, vol. 69, no. 5, pp. 567–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Caughey and P. T. Lansbury Jr., “Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders,” Annual Review of Neuroscience, vol. 26, pp. 267–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. R. T. Liu, J. Gao, S. Cao et al., “Inflammatory mediators induced by amyloid-beta in the retina and RPE in vivo: implications for inflammasome activation in age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 54, no. 3, pp. 2225–2237, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. J. H. Kam, E. Lenassi, and G. Jeffery, “Viewing ageing eyes: diverse sites of amyloid beta accumulation in the ageing mouse retina and the up-regulation of macrophages,” PLoS ONE, vol. 5, no. 10, Article ID e13127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Yoshida, K. Ohno-Matsui, S. Ichinose et al., “The potential role of amyloid β in the pathogenesis of age-related macular degeneration,” The Journal of Clinical Investigation, vol. 115, no. 10, pp. 2793–2800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. K. H. Kurji, J. Z. Cui, T. Lin et al., “Microarray analysis identifies changes in inflammatory gene expression in response to amyloid-β stimulation of cultured human retinal pigment epithelial cells,” Investigative Ophthalmology and Visual Science, vol. 51, no. 2, pp. 1151–1163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. T. Heneka, M. P. Kummer, A. Stutz et al., “NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice,” Nature, vol. 493, no. 7434, pp. 674–678, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Murphy, B. Grehan, and M. A. Lynch, “Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10,” NeuroMolecular Medicine, vol. 16, no. 1, pp. 205–215, 2014. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Schütt, M. Bergmann, F. G. Holz, and J. Kopitz, “Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 12, pp. 983–988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. J. G. Hollyfield, V. L. Bonilha, M. E. Rayborn et al., “Oxidative damage-induced inflammation initiates age-related macular degeneration,” Nature Medicine, vol. 14, no. 2, pp. 194–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Kaneko, S. Dridi, V. Tarallo et al., “DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration,” Nature, vol. 471, no. 7338, pp. 325–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. C. W. Schmid, “Does SINE evolution preclude Alu function?” Nucleic Acids Research, vol. 26, no. 20, pp. 4541–4550, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, “Role for a bidentate ribonuclease in the initiation step of RNA interference,” Nature, vol. 409, no. 6818, pp. 363–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. P. D. Mariner, R. D. Walters, C. A. Espinoza et al., “Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock,” Molecular Cell, vol. 29, no. 4, pp. 499–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Lev-Maor, R. Sorek, N. Shomron, and G. Ast, “The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons,” Science, vol. 300, no. 5623, pp. 1288–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Belgnaoui, R. G. Gosden, O. J. Semmes, and A. Haoudi, “Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells,” Cancer Cell International, vol. 6, article 13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Yi, W. Zhang, Z. Zhai, L. Miao, Y. Wang, and M. Wu, “Bcl-rambo beta, a special splicing variant with an insertion of an Alu-like cassette, promotes etoposide- and Taxol-induced cell death,” FEBS Letters, vol. 534, no. 1–3, pp. 61–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Kim, V. Tarallo, N. Kerur et al., “DICER1/Alu RNA dysmetabolism induces Caspase-8-mediated cell death in age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 45, pp. 16082–16087, 2014. View at Publisher · View at Google Scholar
  85. S. Janssens and R. Beyaert, “A universal role for MyD88 in TLR/IL-1R-mediated signaling,” Trends in Biochemical Sciences, vol. 27, no. 9, pp. 474–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Dupraz, S. Cottet, F. Hamburger, W. Dolci, E. Felley-Bosco, and B. Thorens, “Dominant negative MyD88 proteins inhibit interleukin-1β/interferon-γ-mediated induction of nuclear factor κB-dependent nitrite production and apoptosis in β cells,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 37672–37678, 2000. View at Publisher · View at Google Scholar
  87. A. O. Aliprantis, R.-B. Yang, D. S. Weiss, P. Godowski, and A. Zychlinsky, “The apoptotic signaling pathway activated by Toll-like receptor-2,” The EMBO Journal, vol. 19, no. 13, pp. 3325–3336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. G. López-Castejón and P. Pelegrín, “Current status of inflammasome blockers as anti-inflammatory drugs,” Expert Opinion on Investigational Drugs, vol. 21, no. 7, pp. 995–1007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Arnoult, F. Soares, I. Tattoli, and S. E. Girardin, “Mitochondria in innate immunity,” The EMBO Reports, vol. 12, no. 9, pp. 901–910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. F.-Q. Liang and B. F. Godley, “Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration,” Experimental Eye Research, vol. 76, no. 4, pp. 397–403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Cristina Kenney, M. Chwa, S. R. Atilano et al., “Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions,” Human Molecular Genetics, vol. 23, no. 13, pp. 3537–3551, 2014. View at Publisher · View at Google Scholar
  92. M. C. Kenney, M. Chwa, S. R. Atilano et al., “Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration,” PLoS ONE, vol. 8, no. 1, Article ID e54339, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Malik, T. Hsu, P. Falatoonzadeh et al., “Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases,” PloS ONE, vol. 9, no. 6, Article ID e99003, 2014. View at Publisher · View at Google Scholar
  94. J.-M. Bruey, N. Bruey-Sedano, F. Luciano et al., “Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1,” Cell, vol. 129, no. 1, pp. 45–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Shimada, T. R. Crother, J. Karlin et al., “Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis,” Immunity, vol. 36, no. 3, pp. 401–414, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. K. E. Lawlor, A. van Nieuwenhuijze, K. L. Parker et al., “Bcl-2 overexpression ameliorates immune complex-mediated arthritis by altering FcgammaRIIb expression and monocyte homeostasis,” Journal of Leukocyte Biology, vol. 93, no. 4, pp. 585–597, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Nakahira, J. A. Haspel, V. A. K. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxin-interacting protein links oxidative stress to inflammasome activation,” Nature Immunology, vol. 11, no. 2, pp. 136–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. F. Meissner, K. Molawi, and A. Zychlinsky, “Superoxide dismutase 1 regulates caspase-1 and endotoxic shock,” Nature Immunology, vol. 9, no. 8, pp. 866–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. F. L. van de Veerdonk, S. P. Smeekens, L. A. B. Joosten et al., “Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3030–3033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Meissner, R. A. Seger, D. Moshous, A. Fischer, J. Reichenbach, and A. Zychlinsky, “Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease,” Blood, vol. 116, no. 9, pp. 1570–1573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Rubartelli, “Redox control of NLRP3 inflammasome activation in health and disease,” Journal of Leukocyte Biology, vol. 92, no. 5, pp. 951–958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Minton, “Inflammasomes: ubiquitin lines up for inflammasome activity,” Nature Reviews Immunology, vol. 14, no. 9, pp. 580–581, 2014. View at Publisher · View at Google Scholar
  104. S. Mirza, K. S. Plafker, C. Aston, and S. M. Plafker, “Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina,” Molecular Vision, vol. 16, pp. 2425–2437, 2010. View at Google Scholar · View at Scopus
  105. X. Zhang, J. Zhou, A. F. Fernandes et al., “The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 49, no. 8, pp. 3622–3630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. E. Ramos de Carvalhol, I. Klaassen, I. M. C. Vogels et al., “Complement factor C3a alters proteasome function in human RPE cells and in an animal model of age-related RPE degeneration,” Investigative Ophthalmology and Visual Science, vol. 54, no. 10, pp. 6489–6501, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. J. V. Glenn, H. Mahaffy, S. Dasari et al., “Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 3, pp. 349–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Bergsbaken, S. L. Fink, and B. T. Cookson, “Pyroptosis: host cell death and inflammation,” Nature Reviews Microbiology, vol. 7, no. 2, pp. 99–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. S. B. Bressler and N. M. Bressler, “Age-related macular degeneration: non-neovascular early AMD, intermediate AMD, and geographic atrophy,” in Retina, S. J. Ryan, Ed., pp. 1150–1182, Elsevier, 5th edition, 2014. View at Google Scholar
  110. J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye, vol. 2, no. 5, pp. 552–577, 1988. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Gao and J. G. Hollyfield, “Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 33, no. 1, pp. 1–17, 1992. View at Google Scholar · View at Scopus
  112. S. S. Iyer, W. P. Pulskens, J. J. Sadler et al., “Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20388–20393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. A. M. Newman, N. B. Gallo, L. S. Hancox et al., “Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks,” Genome Medicine, vol. 4, no. 2, article 16, 2012. View at Publisher · View at Google Scholar · View at Scopus