Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016 (2016), Article ID 3909614, 13 pages
Research Article

Osteoclasts Are Required for Hematopoietic Stem and Progenitor Cell Mobilization but Not for Stress Erythropoiesis in Plasmodium chabaudi adami Murine Malaria

Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada H3B 3H5

Received 28 October 2015; Accepted 27 December 2015

Academic Editor: Cesar Terrazas

Copyright © 2016 Hugo Roméro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The anemia and inflammation concurrent with blood stage malaria trigger stress haematopoiesis and erythropoiesis. The activity of osteoclasts seems required for the mobilization of hematopoietic stem and progenitor cells (HSPC) from the bone marrow to the periphery. Knowing that BALB/c mice with acute Plasmodium chabaudi adami malaria have profound alterations in bone remodelling cells, we evaluated the extent to which osteoclasts influence their hematopoietic response to infection. For this, mice were treated with osteoclast inhibiting hormone calcitonin prior to parasite inoculation, and infection as well as hematological parameters was studied. In agreement with osteoclast-dependent HSPC mobilization, administration of calcitonin led to milder splenomegaly, reduced numbers of HSPC in the spleen, and their retention in the bone marrow. Although C-terminal telopeptide (CTX) levels, indicative of bone resorption, were lower in calcitonin-treated infected mice, they remained comparable in naive and control infected mice. Calcitonin-treated infected mice conveniently responded to anemia but generated less numbers of splenic macrophages and suffered from exacerbated infection; interestingly, calcitonin also decreased the number of macrophages generated in vitro. Globally, our results indicate that although osteoclast-dependent HSC mobilization from bone marrow to spleen is triggered in murine blood stage malaria, this activity is not essential for stress erythropoiesis.