Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016, Article ID 6467375, 12 pages
http://dx.doi.org/10.1155/2016/6467375
Research Article

Linking CD11b+ Dendritic Cells and Natural Killer T Cells to Plaque Inflammation in Atherosclerosis

1Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
2Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
3Hospital Network Antwerp, 2020 Antwerp, Belgium
4Department of Thoracic and Vascular Surgery, University Hospital Antwerp, 2650 Antwerp, Belgium
5StatUa Center for Statistics, University of Antwerp, 2650 Antwerp, Belgium
6Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2650 Antwerp, Belgium

Received 27 October 2015; Revised 30 December 2015; Accepted 12 January 2016

Academic Editor: Daniel Benitez-Ribas

Copyright © 2016 Miche Rombouts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Galkina and K. Ley, “Immune and inflammatory mechanisms of atherosclerosis,” Annual Review of Immunology, vol. 27, pp. 165–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Witztum and A. H. Lichtman, “The influence of innate and adaptive immune responses on atherosclerosis,” Annual Review of Pathology: Mechanisms of Disease, vol. 9, pp. 73–102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Libby and G. K. Hansson, “Inflammation and immunity in diseases of the arterial tree: players and layers,” Circulation Research, vol. 116, no. 2, pp. 307–311, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Lozano, M. Naghavi, K. Foreman et al., “Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 9859, pp. 2095–2128, 2012. View at Publisher · View at Google Scholar
  6. E. L. Gautier, T. Huby, F. Saint-Charles et al., “Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis,” Circulation, vol. 119, no. 17, pp. 2367–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. Van Vré, I. Van Brussel, J. M. Bosmans, C. J. Vrints, and H. Bult, “Dendritic cells in human atherosclerosis: from circulation to atherosclerotic plaques,” Mediators of Inflammation, vol. 2011, Article ID 941396, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Zernecke, “Dendritic cells in atherosclerosis: evidence in mice and humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 4, pp. 763–770, 2015. View at Publisher · View at Google Scholar
  9. H. Ait-Oufella, A. P. Sage, Z. Mallat, and A. Tedgui, “Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis,” Circulation Research, vol. 114, no. 10, pp. 1640–1660, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. D. A. Chistiakov, I. A. Sobenin, A. N. Orekhov, and Y. V. Bobryshev, “Myeloid dendritic cells: development, functions, and role in atherosclerotic inflammation,” Immunobiology, vol. 220, no. 6, pp. 833–844, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Guilliams, F. Ginhoux, C. Jakubzick et al., “Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny,” Nature Reviews Immunology, vol. 14, no. 8, pp. 571–578, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Meredith, K. Liu, G. Darrasse-Jeze et al., “Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage,” The Journal of Experimental Medicine, vol. 209, no. 6, pp. 1153–1165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Paulson, S.-N. Zhu, M. Chen, S. Nurmohamed, J. Jongstra-Bilen, and M. I. Cybulsky, “Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis,” Circulation Research, vol. 106, no. 2, pp. 383–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Van Brussel, R. Ammi, M. Rombouts et al., “Fluorescent activated cell sorting: an effective approach to study dendritic cell subsets in human atherosclerotic plaques,” Journal of Immunological Methods, vol. 417, pp. 76–85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-H. Choi, C. Cheong, D. B. Dandamudi et al., “Flt3 signaling-dependent dendritic cells protect against atherosclerosis,” Immunity, vol. 35, no. 5, pp. 819–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. I. T. M. N. Daissormont, A. Christ, L. Temmerman et al., “Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity,” Circulation Research, vol. 109, no. 12, pp. 1387–1395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Döring, H. D. Manthey, M. Drechsler et al., “Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis,” Circulation, vol. 125, no. 13, pp. 1673–1683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. N. MacRitchie, G. Grassia, S. R. Sabir et al., “Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein e-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 11, pp. 2569–2579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Sage, D. Murphy, P. Maffia et al., “MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity,” Circulation, vol. 130, no. 16, pp. 1363–1373, 2014. View at Publisher · View at Google Scholar
  20. J. Li and K. Ley, “Lymphocyte migration into atherosclerotic plaque,” Arteriosclerosis, Thrombosis and Vascular Biology, vol. 35, no. 1, pp. 40–49, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. P. J. Brennan, M. Brigl, and M. B. Brenner, “Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions,” Nature Reviews Immunology, vol. 13, no. 2, pp. 101–117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bondarenko, A. L. Catapano, and G. D. Norata, “The CD1d-natural killer T cell axis in atherosclerosis,” Journal of Innate Immunity, vol. 6, no. 1, pp. 3–12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Ostos, D. Recalde, M. M. Zakin, and D. Scott-Algara, “Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation,” FEBS Letters, vol. 519, no. 1–3, pp. 23–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Nilsson, A. Lichtman, and A. Tedgui, “Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges,” Journal of Internal Medicine, vol. 278, no. 5, pp. 507–519, 2015. View at Publisher · View at Google Scholar
  25. N. Alberts-Grill, A. Rezvan, D. J. Son et al., “Dynamic immune cell accumulation during flow-induced atherogenesis in mouse carotid artery: an expanded flow cytometry method,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 3, pp. 623–632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Van den Broeck, A. Derore, and P. Simoens, “Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice,” Journal of Immunological Methods, vol. 312, no. 1-2, pp. 12–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Butcher, M. Herre, K. Ley, and E. Galkina, “Flow cytometry analysis of immune cells within murine aortas,” Journal of Visualized Experiments, no. 53, Article ID e2848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014, http://www.R-project.org/.
  29. S. Gurka, E. Hartung, M. Becker et al., “Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPα,” Frontiers in Immunology, vol. 6, article 35, 2015. View at Publisher · View at Google Scholar
  30. S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, “A novel transcription factor, T-bet, directs Th1 lineage commitment,” Cell, vol. 100, no. 6, pp. 655–669, 2000. View at Publisher · View at Google Scholar
  31. Z. Reiner, A. L. Catapano, G. De Backer et al., “ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS),” European Heart Journal, vol. 32, no. 14, pp. 1769–1818, 2011. View at Publisher · View at Google Scholar
  32. D. C. Goff Jr., D. M. Lloyd-Jones, G. Bennett et al., “2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines,” Circulation, vol. 129, no. 25, supplement 2, pp. S49–S73, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Ammirati, F. Moroni, G. D. Norata, M. Magnoni, and P. G. Camici, “Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis,” Mediators of Inflammation, vol. 2015, Article ID 718329, 15 pages, 2015. View at Publisher · View at Google Scholar
  34. A. Zernecke, E. A. Liehn, J.-L. Gao, W. A. Kuziel, P. M. Murphy, and C. Weber, “Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10,” Blood, vol. 107, no. 11, pp. 4240–4243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Braunersreuther, A. Zernecke, C. Arnaud et al., “Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 2, pp. 373–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Luchtefeld, C. Grothusen, A. Gagalick et al., “Chemokine receptor 7 knockout attenuates atherosclerotic plaque development,” Circulation, vol. 122, no. 16, pp. 1621–1628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. P. van der Vorst, Y. Döring, and C. Weber, “Chemokines and their receptors in Atherosclerosis,” Journal of Molecular Medicine, vol. 93, no. 9, pp. 963–971, 2015. View at Publisher · View at Google Scholar
  38. A. M. Aslanian, H. A. Chapman, and I. F. Charo, “Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 3, pp. 628–632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Nakai, K. Iwabuchi, S. Fujii et al., “Natural killer T cells accelerate atherogenesis in mice,” Blood, vol. 104, no. 7, pp. 2051–2059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Major, M. T. Wilson, J. L. McCaleb et al., “Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 12, pp. 2351–2357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. U. S. Jeon, J. Choi, Y. Kim, S. Ryu, and Y. Kim, “The enhanced expression of IL-17-secreting T cells during the early progression of atherosclerosis in ApoE-deficient mice fed on a western-type diet,” Experimental & Molecular Medicine, vol. 47, no. 5, p. e163, 2015. View at Publisher · View at Google Scholar
  42. A. J. Murphy, M. Akhtari, S. Tolani et al., “ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice,” The Journal of Clinical Investigation, vol. 121, no. 10, pp. 4138–4149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C. S. Robbins, A. Chudnovskiy, P. J. Rauch et al., “Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions,” Circulation, vol. 125, no. 2, pp. 364–374, 2012. View at Publisher · View at Google Scholar
  44. C. Weber, S. Meiler, Y. Döring et al., “CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice,” The Journal of Clinical Investigation, vol. 121, no. 7, pp. 2898–2910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. E. A. Van Vré, V. Y. Hoymans, H. Bult et al., “Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease,” Coronary Artery Disease, vol. 17, no. 3, pp. 243–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Yilmaz, T. Schaller, I. Cicha et al., “Predictive value of the decrease in circulating dendritic cell precursors in stable coronary artery disease,” Clinical Science, vol. 116, no. 4, pp. 353–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Kyriakakis, M. Cavallari, J. Andert et al., “Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis,” European Journal of Immunology, vol. 40, no. 11, pp. 3268–3279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Levula, N. Oksala, N. Airla et al., “Genes involved in systemic and arterial bed dependent atherosclerosis—tampere vascular study,” PLoS ONE, vol. 7, no. 4, Article ID e33787, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Dworacka, A. Wesołowska, E. Wysocka, H. Winiarska, S. Iskakova, and G. Dworacki, “Circulating CD3+56+ cell subset in pre-diabetes,” Experimental and Clinical Endocrinology and Diabetes, vol. 122, no. 2, pp. 65–70, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. S. P. Berzins and D. S. Ritchie, “Natural killer T cells: drivers or passengers in preventing human disease?” Nature Reviews Immunology, vol. 14, no. 9, pp. 640–646, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. C. J. Montoya, D. Pollard, J. Martinson et al., “Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11,” Immunology, vol. 122, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus