Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016, Article ID 7987686, 4 pages
http://dx.doi.org/10.1155/2016/7987686
Research Article

The Association of High Prevalence of Trophozoites in Peripheral Blood with Lower Antibody Response to P. falciparum Infected Erythrocytes among Asymptomatic Children in Sudan

1Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
2Faculty of Medicine, Al-Zaiem Al Azhari University, Khartoum, Sudan
3Institute of Endemic Diseases, University of Khartoum, 11111 Khartoum, Sudan
4The Blue Nile Institute for Training and Research, Gezira University, Wad Madani, Sudan
5College of Pharmacy, The National Ribat University, Khartoum, Sudan

Received 12 March 2016; Accepted 1 June 2016

Academic Editor: Christophe Chevillard

Copyright © 2016 Sara N. Mohamed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kyes, P. Horrocks, and C. Newbold, “Antigenic variation at the infected red cell surface in malaria,” Annual Review of Microbiology, vol. 55, pp. 673–707, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. C. Bull, M. Kortok, O. Kai et al., “Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age,” Journal of Infectious Diseases, vol. 182, no. 1, pp. 252–259, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Nielsen, T. Staalsoe, J. A. L. Kurtzhals et al., “Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity,” The Journal of Immunology, vol. 168, no. 7, pp. 3444–3450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Vande Waa, J. B. Jensen, M. A. S. Akood, and R. Bayoumi, “Longitudinal study on the in vitro immune response to Plasmodium falciparum in Sudan,” Infection and Immunity, vol. 45, no. 2, pp. 505–510, 1984. View at Google Scholar · View at Scopus
  5. K. Fruh, O. Doumbo, H.-M. Muller et al., “Human antibody response to the major merozoite surface antigen of Plasmodium falciparum is strain specific and short-lived,” Infection and Immunity, vol. 59, no. 4, pp. 1319–1324, 1991. View at Google Scholar · View at Scopus
  6. D. R. Cavanagh, I. M. Elhassan, C. Roper et al., “A longitudinal study of type-specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan,” The Journal of Immunology, vol. 161, no. 1, pp. 347–359, 1998. View at Google Scholar · View at Scopus
  7. H. A. Giha, T. G. Theander, T. Staalsø et al., “Seasonal variation in agglutination of Plasmodium falciparum-infected erythrocytes,” The American Journal of Tropical Medicine and Hygiene, vol. 58, no. 4, pp. 399–405, 1998. View at Google Scholar
  8. I. Nebie, A. B. Tiono, D. A. Diallo et al., “Do antibody responses to malaria vaccine candidates influenced by the level of malaria transmission protect from malaria?” Tropical Medicine and International Health, vol. 13, no. 2, pp. 229–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Al-Yaman, B. Genton, M. Falk et al., “Humoral response to Plasmodium falciparum ring-infected erythrocyte surface antigen in a highly endemic area of Papua New Guinea,” American Journal of Tropical Medicine and Hygiene, vol. 52, no. 1, pp. 66–71, 1995. View at Google Scholar · View at Scopus
  10. S. M. Kinyanjui, T. Mwangi, P. C. Bull, C. I. Newbold, and K. Marsh, “Protection against clinical malaria by heterologous immunoglobulin G antibodies against malaria-infected erythrocyte variant surface antigens requires interaction with asymptomatic infections,” Journal of Infectious Diseases, vol. 190, no. 9, pp. 1527–1533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. P. Shi, U. Sayed, S. H. Qari et al., “Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1,” Infection and Immunity, vol. 64, no. 7, pp. 2716–2723, 1996. View at Google Scholar · View at Scopus
  12. P. Tangteerawatana, S. Krudsood, K. Chalermrut, S. Looareesuwan, and S. Khusmith, “Natural human IgG subclass antibodies to Plasmodium falciparum blood stage antigens and their relation to malaria resistance in an endemic area of Thailand Southeast,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 32, no. 2, pp. 247–254, 2001. View at Google Scholar
  13. J.-L. Sarthou, G. Angel, G. Aribot et al., “Prognostic value of anti-Plasmodium falciparum-specific immunoglobulin G3, cytokines, and their soluble receptors in West African patients with severe malaria,” Infection and Immunity, vol. 65, no. 8, pp. 3271–3276, 1997. View at Google Scholar · View at Scopus
  14. O. Garraud, S. Mahanty, and R. Perraut, “Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design,” Trends in Immunology, vol. 24, no. 1, pp. 30–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. M. Warmerdam, J. G. J. Van de Winkel, A. Vlug, N. A. C. Westerdaal, and P. J. A. Capel, “A single amino acid in the second Ig-like domain of the human Fcγ receptor II is critical for human IgG2 binding,” The Journal of Immunology, vol. 147, no. 4, pp. 1338–1343, 1991. View at Google Scholar · View at Scopus
  16. C. Aucan, Y. Traoré, F. Tall et al., “High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria,” Infection and Immunity, vol. 68, no. 3, pp. 1252–1258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Hassan, A. P. Arez, H. S. Mohamed, A. M. Elhussein, M. E. Ibrahim, and N. H. Abdulhadi, “The reduced sequestration of Plasmodium-falciparum-infected erythrocytes among malaria cases with sickle-cell trait: In-vivo evidence from Sudan,” Annals of Tropical Medicine and Parasitology, vol. 102, no. 8, pp. 743–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Trager and J. B. Jensen, “Human malaria parasites in continuous culture,” Science, vol. 193, no. 4254, pp. 673–675, 1976. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Kraemer and J. D. Smith, “A family affair: var genes, PfEMP1 binding, and malaria disease,” Current Opinion in Microbiology, vol. 9, no. 4, pp. 374–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Kinyanjui, P. Bejon, F. H. Osier, P. C. Bull, and K. Marsh, “What you see is not what you get: implications of the brevity of antibody responses to malaria antigens and transmission heterogeneity in longitudinal studies of malaria immunity,” Malaria Journal, vol. 8, article 242, 2009. View at Publisher · View at Google Scholar · View at Scopus