Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017, Article ID 2432958, 13 pages
https://doi.org/10.1155/2017/2432958
Review Article

Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases

1Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy
2Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy

Correspondence should be addressed to Luigi Sironi; ti.iminu@inoris.igiul

Received 26 January 2017; Accepted 17 August 2017; Published 28 August 2017

Academic Editor: Donna-Marie McCafferty

Copyright © 2017 Francesca Colazzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Capra, M. D. Thompson, A. Sala, D. E. Cole, G. Folco, and G. E. Rovati, “Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends,” Medicinal Research Reviews, vol. 27, no. 4, pp. 469–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Capra, “Molecular and functional aspects of human cysteinyl leukotriene receptors,” Pharmacological Research, vol. 50, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. K. Miller, J. W. Gillard, P. J. Vickers et al., “Identification and isolation of a membrane protein necessary for leukotriene production,” Nature, vol. 343, no. 6255, pp. 278–281, 1990. View at Publisher · View at Google Scholar
  5. M. Peters-Golden and W. R. Henderson Jr., “Leukotrienes,” The New England Journal of Medicine, vol. 357, no. 18, pp. 1841–1854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Brink, S. E. Dahlen, J. Drazen et al., “International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors,” Pharmacological Reviews, vol. 55, no. 1, pp. 195–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Back, “Functional characteristics of cysteinyl-leukotriene receptor subtypes,” Life Sciences, vol. 71, no. 6, pp. 611–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Maekawa, Y. Kanaoka, W. Xing, and K. F. Austen, “Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16695–16700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. R. Lynch, G. P. O'Neill, Q. Liu et al., “Characterization of the human cysteinyl leukotriene CysLT1 receptor,” Nature, vol. 399, no. 6738, pp. 789–793, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. C. E. Heise, B. F. O'Dowd, D. J. Figueroa et al., “Characterization of the human cysteinyl leukotriene 2 receptor,” The Journal of Biological Chemistry, vol. 275, no. 39, pp. 30531–30536, 2000. View at Publisher · View at Google Scholar
  11. P. Ciana, M. Fumagalli, M. L. Trincavelli et al., “The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor,” The EMBO Journal, vol. 25, no. 19, pp. 4615–4627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kanaoka, A. Maekawa, and K. F. Austen, “Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand,” The Journal of Biological Chemistry, vol. 288, no. 16, pp. 10967–10972, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Paruchuri, Y. Jiang, C. Feng, S. A. Francis, J. Plutzky, and J. A. Boyce, “Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells,” The Journal of Biological Chemistry, vol. 283, no. 24, pp. 16477–16487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Paruchuri, H. Tashimo, C. Feng et al., “Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor,” The Journal of Experimental Medicine, vol. 206, no. 11, pp. 2543–2555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. K. Lam, J. F. Penrose, G. J. Freeman, and K. F. Austen, “Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7663–7667, 1994. View at Google Scholar
  16. J. M. Drazen and K. F. Austen, “Leukotrienes and airway responses,” The American Review of Respiratory Disease, vol. 136, no. 4, pp. 985–998, 1987. View at Google Scholar
  17. F. C. Thien and E. H. Walters, “Eicosanoids and asthma: an update,” Prostaglandins, Leukotrienes, and Essential Fatty Acids, vol. 52, no. 5, pp. 271–288, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Feinmark and P. J. Cannon, “Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes,” The Journal of Biological Chemistry, vol. 261, no. 35, pp. 16466–16472, 1986. View at Google Scholar
  19. J. A. Maclouf and R. C. Murphy, “Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4,” The Journal of Biological Chemistry, vol. 263, no. 1, pp. 174–181, 1988. View at Google Scholar
  20. C. A. Dahinden, R. M. Clancy, M. Gross, J. M. Chiller, and T. E. Hugli, “Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 19, pp. 6632–6636, 1985. View at Google Scholar
  21. T. D. Bigby and N. Meslier, “Transcellular lipoxygenase metabolism between monocytes and platelets,” Journal of Immunology, vol. 143, no. 6, pp. 1948–1954, 1989. View at Google Scholar
  22. T. D. Bigby, D. M. Lee, N. Meslier, and D. C. Gruenert, “Leukotriene A4 hydrolase activity of human airway epithelial cells,” Biochemical and Biophysical Research Communications, vol. 164, no. 1, pp. 1–7, 1989. View at Google Scholar
  23. F. Grimminger, U. Sibelius, and W. Seeger, “Amplification of LTB4 generation in AM-PMN cocultures: transcellular 5-lipoxygenase metabolism,” The American Journal of Physiology, vol. 261, no. 2, Part 1, pp. L195–L203, 1991. View at Google Scholar
  24. H. R. Brady and C. N. Serhan, “Adhesion promotes transcellular leukotriene biosynthesis during neutrophil-glomerular endothelial cell interactions: inhibition by antibodies against CD18 and L-selectin,” Biochemical and Biophysical Research Communications, vol. 186, no. 3, pp. 1307–1314, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Iversen, P. Kristensen, B. Gron, V. A. Ziboh, and K. Kragballe, “Human epidermis transforms exogenous leukotriene A4 into peptide leukotrienes: possible role in transcellular metabolism,” Archives of Dermatological Research, vol. 286, pp. 261–266, 1994. View at Google Scholar
  26. M. Amat, C. Diaz, and L. Vila, “Leukotriene A4 hydrolase and leukotriene C4 synthase activities in human chondrocytes: transcellular biosynthesis of leukotrienes during granulocyte-chondrocyte interaction,” Arthritis and Rheumatism, vol. 41, no. 9, pp. 1645–1651, 1998. View at Publisher · View at Google Scholar
  27. J. Maclouf, A. Sala, G. Rossoni, F. Berti, R. Muller-Peddinghaus, and G. Folco, “Consequences of transcellular biosynthesis of leukotriene C4 on organ function,” Haemostasis, vol. 26, Supplement 4, pp. 28–36, 1996. View at Publisher · View at Google Scholar
  28. G. E. Rovati and V. Capra, “Cysteinyl-leukotriene receptors and cellular signals,” Scientific World Journal, vol. 7, pp. 1375–1392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. M. Sarau, R. S. Ames, J. Chambers et al., “Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor,” Molecular Pharmacology, vol. 56, no. 3, pp. 657–663, 1999. View at Publisher · View at Google Scholar
  30. M. Kamohara, J. Takasaki, M. Matsumoto et al., “Functional characterization of cysteinyl leukotriene CysLT2 receptor on human coronary artery smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 287, no. 5, pp. 1088–1092, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. H. P. Nothacker, Z. Wang, Y. Zhu, R. K. Reinscheid, S. H. Lin, and O. Civelli, “Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist,” Molecular Pharmacology, vol. 58, no. 6, pp. 1601–1608, 2000. View at Publisher · View at Google Scholar
  32. J. Takasaki, M. Kamohara, M. Matsumoto et al., “The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT2 receptor,” Biochemical and Biophysical Research Communications, vol. 274, no. 2, pp. 316–322, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Hui, Y. Cheng, I. Smalera et al., “Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure,” Circulation, vol. 110, no. 21, pp. 3360–3366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. P. Moos, J. D. Mewburn, F. W. Kan et al., “Cysteinyl leukotriene 2 receptor-mediated vascular permeability via transendothelial vesicle transport,” The FASEB Journal, vol. 22, no. 12, pp. 4352–4362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Back and G. K. Hansson, “Leukotriene receptors in atherosclerosis,” Annals of Medicine, vol. 38, pp. 493–502, 2006. View at Google Scholar
  36. L. Mazzetti, S. Franchi-Micheli, S. Nistri et al., “The ACh-induced contraction in rat aortas is mediated by the Cys Lt1 receptor via intracellular calcium mobilization in smooth muscle cells,” British Journal of Pharmacology, vol. 138, no. 4, pp. 707–715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. R. K. Singh, S. Gupta, S. Dastidar, and A. Ray, “Cysteinyl leukotrienes and their receptors: molecular and functional characteristics,” Pharmacology, vol. 85, no. 6, pp. 336–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Feuerstein, “Leukotrienes and the cardiovascular system,” Prostaglandins, vol. 27, no. 5, pp. 781–802, 1984. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Lefer, “Thromboxane A2 and leukotrienes are eicosanoid mediators of shock and ischemic disorders,” Progress in Clinical and Biological Research, vol. 264, pp. 101–114, 1988. View at Google Scholar
  40. L. G. Letts, “Leukotrienes: role in cardiovascular physiology,” Cardiovascular Clinics, vol. 18, no. 1, pp. 101–113, 1987. View at Google Scholar
  41. G. Folco, G. Rossoni, C. Buccellati, F. Berti, J. Maclouf, and A. Sala, “Leukotrienes in cardiovascular diseases,” American Journal of Respiratory and Critical Care Medicine, vol. 161, pp. S112–S116, 2000. View at Google Scholar
  42. L. Walch, X. Norel, J. P. Gascard, and C. Brink, “Functional studies of leukotriene receptors in vascular tissues,” American Journal of Respiratory and Critical Care Medicine, vol. 161, pp. S107–S111, 2000. View at Google Scholar
  43. T. M. McIntyre, G. A. Zimmerman, and S. M. Prescott, “Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 7, pp. 2204–2208, 1986. View at Google Scholar
  44. Y. H. Datta, M. Romano, B. C. Jacobson, D. E. Golan, C. N. Serhan, and B. M. Ewenstein, “Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells,” Circulation, vol. 92, no. 11, pp. 3304–3311, 1995. View at Google Scholar
  45. K. E. Pedersen, B. S. Bochner, and B. J. Undem, “Cysteinyl leukotrienes induce P-selectin expression in human endothelial cells via a non-CysLT1 receptor-mediated mechanism,” The Journal of Pharmacology and Experimental Therapeutics, vol. 281, no. 2, pp. 655–662, 1997. View at Google Scholar
  46. G. Riccioni, T. Bucciarelli, B. Mancini, C. Di Ilio, and N. D'Orazio, “Antileukotriene drugs: clinical application, effectiveness and safety,” Current Medicinal Chemistry, vol. 14, no. 18, pp. 1966–1977, 2007. View at Google Scholar
  47. N. de Prost, C. El-Karak, M. Avila, F. Ichinose, and M. F. Vidal Melo, “Changes in cysteinyl leukotrienes during and after cardiac surgery with cardiopulmonary bypass in patients with and without chronic obstructive pulmonary disease,” The Journal of Thoracic and Cardiovascular Surgery, vol. 141, no. 6, pp. 1496–1502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Bäck, “Atherosclerosis, COPD and chronic inflammation,” Respiratory Medicine: COPD Update, vol. 4, no. 2, pp. 60–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Gompertz and R. A. Stockley, “A randomized, placebo-controlled trial of a leukotriene synthesis inhibitor in patients with COPD,” Chest, vol. 122, no. 1, pp. 289–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Hakonarson, S. Thorvaldsson, A. Helgadottir et al., “Effects of a 5-lipoxygenase–activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial,” JAMA, vol. 293, no. 18, pp. 2245–2256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. U. M. Becher, A. Ghanem, V. Tiyerili, D. O. Furst, G. Nickenig, and C. F. Mueller, “Inhibition of leukotriene C4 action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 3, pp. 570–577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Daglar, T. Karaca, Y. N. Yuksek et al., “Effect of montelukast and MK-886 on hepatic ischemia-reperfusion injury in rats,” The Journal of Surgical Research, vol. 153, no. 1, pp. 31–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Duran, H. Otiuk, E. H. Terzi et al., “Protective effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against intestinal ischemia-reperfusion injury in the rat,” Acta Chirurgica Belgica, vol. 113, no. 6, pp. 401–405, 2013. View at Google Scholar
  54. E. Nobili, M. D. Salvado, L. Folkersen et al., “Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease,” PLoS One, vol. 7, no. 7, article e41786, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Allayee, J. Hartiala, W. Lee et al., “The effect of montelukast and low-dose theophylline on cardiovascular disease risk factors in asthmatics,” Chest, vol. 132, no. 3, pp. 868–874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Ingelsson, L. Yin, and M. Back, “Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease,” The Journal of Allergy and Clinical Immunology, vol. 129, article e702, pp. 702–707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Hoxha, G. E. Rovati, and A. B. Cavanillas, “The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field,” European Journal of Clinical Pharmacology, vol. 73, no. 7, pp. 799–809, 2017. View at Publisher · View at Google Scholar
  58. J. L. Witztum, “The oxidation hypothesis of atherosclerosis,” Lancet, vol. 344, no. 8925, pp. 793–795, 1994. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Rubin and K. W. Mollison, “Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway eicosanoids,” Prostaglandins & Other Lipid Mediators, vol. 83, no. 3, pp. 188–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. R. De Caterina, A. Mazzone, D. Giannessi et al., “Leukotriene B4 production in human atherosclerotic plaques,” Biomedica Biochimica Acta, vol. 47, no. 10-11, pp. S182–S185, 1988. View at Google Scholar
  63. R. Spanbroek, R. Grabner, K. Lotzer et al., “Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1238–1243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Cipollone, A. Mezzetti, M. L. Fazia et al., “Association between 5-lipoxygenase expression and plaque instability in humans,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 8, pp. 1665–1670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Mehrabian, H. Allayee, J. Wong et al., “Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice,” Circulation Research, vol. 91, no. 2, pp. 120–126, 2002. View at Google Scholar
  66. L. Zhao, M. P. Moos, R. Grabner et al., “The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm,” Nature Medicine, vol. 10, no. 9, pp. 966–973, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation, vol. 92, no. 3, pp. 657–671, 1995. View at Google Scholar
  68. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. S. E. Dahlen, “Treatment of asthma with antileukotrienes: first line or last resort therapy?” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 40–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Back, “Leukotriene signaling in atherosclerosis and ischemia,” Cardiovascular Drugs and Therapy, vol. 23, no. 1, pp. 41–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. J. Grau, H. Becher, C. M. Ziegler et al., “Periodontal disease as a risk factor for ischemic stroke,” Stroke, vol. 35, no. 2, pp. 496–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Rutger Persson, O. Ohlsson, T. Pettersson, and S. Renvert, “Chronic periodontitis, a significant relationship with acute myocardial infarction,” European Heart Journal, vol. 24, no. 23, pp. 2108–2115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. P. O. Soder, B. Soder, J. Nowak, and T. Jogestrand, “Early carotid atherosclerosis in subjects with periodontal diseases,” Stroke, vol. 36, no. 6, pp. 1195–1200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Back, S. Airila-Mansson, T. Jogestrand, B. Soder, and P. O. Soder, “Increased leukotriene concentrations in gingival crevicular fluid from subjects with periodontal disease and atherosclerosis,” Atherosclerosis, vol. 193, no. 2, pp. 389–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Helgadottir, A. Manolescu, G. Thorleifsson et al., “The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke,” Nature Genetics, vol. 36, no. 3, pp. 233–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Mehrabian, J. Wong, X. Wang et al., “Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia,” Circulation Research, vol. 89, no. 2, pp. 125–130, 2001. View at Google Scholar
  77. H. Kuhn, M. Anton, C. Gerth, and A. Habenicht, “Amino acid differences in the deduced 5-lipoxygenase sequence of CAST atherosclerosis-resistance mice confer impaired activity when introduced into the human ortholog,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 6, pp. 1072–1076, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Zhou, S. Ge, D. Liu et al., “Atorvastatin reduces plaque vulnerability in an atherosclerotic rabbit model by altering the 5-lipoxygenase pathway,” Cardiology, vol. 115, no. 3, pp. 221–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Laaksonen, M. T. Janis, and M. Oresic, “Lipidomics-based safety biomarkers for lipid-lowering treatments,” Angiology, vol. 59, 2 Supplement, pp. 65S–68S, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Bevan, M. W. Lorenz, M. Sitzer, and H. S. Markus, “Genetic variation in the leukotriene pathway and carotid intima-media thickness: a 2-stage replication study,” Stroke, vol. 40, no. 3, pp. 696–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. H. Dwyer, H. Allayee, K. M. Dwyer et al., “Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis,” The New England Journal of Medicine, vol. 350, no. 1, pp. 29–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Y. Cao, T. St Amand, R. Grabner, A. J. Habenicht, and C. D. Funk, “Genetic and pharmacological inhibition of the 5-lipoxygenase/leukotriene pathway in atherosclerotic lesion development in ApoE deficient mice,” Atherosclerosis, vol. 203, no. 2, pp. 395–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Poeckel and C. D. Funk, “The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease,” Cardiovascular Research, vol. 86, no. 2, pp. 243–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Jawien, M. Gajda, M. Rudling et al., “Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice,” European Journal of Clinical Investigation, vol. 36, no. 3, pp. 141–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Jawien, M. Gajda, R. Olszanecki, and R. Korbut, “BAY x 1005 attenuates atherosclerosis in apoE/LDLR - double knockout mice,” Journal of Physiology and Pharmacology, vol. 58, no. 3, pp. 583–588, 2007. View at Google Scholar
  86. M. Back, A. Sultan, O. Ovchinnikova, and G. K. Hansson, “5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation,” Circulation Research, vol. 100, no. 7, pp. 946–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Jawien, M. Gajda, P. Wolkow, J. Zuranska, R. Olszanecki, and R. Korbut, “The effect of montelukast on atherogenesis in apoE/LDLR-double knockout mice,” Journal of Physiology and Pharmacology, vol. 59, no. 3, pp. 633–639, 2008. View at Google Scholar
  88. C. F. Mueller, K. Wassmann, J. D. Widder et al., “Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export,” Circulation, vol. 117, no. 22, pp. 2912–2918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Allen, M. Dashwood, K. Morrison, and M. Yacoub, “Differential leukotriene constrictor responses in human atherosclerotic coronary arteries,” Circulation, vol. 97, no. 24, pp. 2406–2413, 1998. View at Google Scholar
  90. K. Lotzer, R. Spanbroek, M. Hildner et al., “Differential leukotriene receptor expression and calcium responses in endothelial cells and macrophages indicate 5-lipoxygenase-dependent circuits of inflammation and atherogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 8, pp. e32–e36, 2003. View at Publisher · View at Google Scholar
  91. E. Duah, R. K. Adapala, N. Al-Azzam et al., “Cysteinyl leukotrienes regulate endothelial cell inflammatory and proliferative signals through CysLT2 and CysLT1 receptors,” Scientific Reports, vol. 3, p. 3274, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. D. M. Iovannisci, E. J. Lammer, L. Steiner et al., “Association between a leukotriene C4 synthase gene promoter polymorphism and coronary artery calcium in young women: the Muscatine study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, pp. 394–399, 2007. View at Google Scholar
  93. M. A. Allison, J. Tiefenbrun, R. D. Langer, and C. M. Wright, “Atherosclerotic calcification and intimal medial thickness of the carotid arteries,” International Journal of Cardiology, vol. 103, no. 1, pp. 98–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. J. A. Rumberger, D. B. Simons, L. A. Fitzpatrick, P. F. Sheedy, and R. S. Schwartz, “Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study,” Circulation, vol. 92, pp. 2157–2162, 1995. View at Google Scholar
  95. G. D. Kruh, H. Zeng, P. A. Rea et al., “MRP subfamily transporters and resistance to anticancer agents,” Journal of Bioenergetics and Biomembranes, vol. 33, no. 6, pp. 493–501, 2001. View at Google Scholar
  96. C. F. Mueller, J. D. Widder, J. S. McNally, L. McCann, D. P. Jones, and D. G. Harrison, “The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress,” Circulation Research, vol. 97, no. 7, pp. 637–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. J. Flens, G. J. Zaman, P. van der Valk et al., “Tissue distribution of the multidrug resistance protein,” The American Journal of Pathology, vol. 148, no. 4, pp. 1237–1247, 1996. View at Google Scholar
  98. J. Wijnholds, R. Evers, M. R. van Leusden et al., “Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein,” Nature Medicine, vol. 3, no. 11, pp. 1275–1279, 1997. View at Publisher · View at Google Scholar
  99. S. P. Cole, “Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter,” The Journal of Biological Chemistry, vol. 289, no. 45, pp. 30880–30888, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. D. Piomelli, S. J. Feinmark, and P. J. Cannon, “Leukotriene biosynthesis by canine and human coronary arteries,” The Journal of Pharmacology and Experimental Therapeutics, vol. 241, no. 3, pp. 763–770, 1987. View at Google Scholar
  101. K. M. Vannella, T. R. McMillan, R. P. Charbeneau et al., “Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function,” Journal of Immunology, vol. 179, no. 11, pp. 7883–7890, 2007. View at Google Scholar
  102. C. Labat, J. L. Ortiz, X. Norel et al. et al., “A second cysteinyl leukotriene receptor in human lung,” The Journal of Pharmacology and Experimental Therapeutics, vol. 263, no. 2, pp. 800–805, 1992. View at Google Scholar
  103. C. Vigorito, A. Giordano, R. Cirillo, A. Genovese, F. Rengo, and G. Marone, “Metabolic and hemodynamic effects of peptide leukotriene C4 and D4 in man,” International Journal of Clinical & Laboratory Research, vol. 27, no. 3, pp. 178–184, 1997. View at Google Scholar
  104. M. Carry, V. Korley, J. T. Willerson, L. Weigelt, A. W. Ford-Hutchinson, and P. Tagari, “Increased urinary leukotriene excretion in patients with cardiac ischemia. In vivo evidence for 5-lipoxygenase activation,” Circulation, vol. 85, no. 1, pp. 230–236, 1992. View at Google Scholar
  105. S. P. Allen, A. P. Sampson, P. J. Piper, A. H. Chester, S. K. Ohri, and M. H. Yacoub, “Enhanced excretion of urinary leukotriene E4 in coronary artery disease and after coronary artery bypass surgery,” Coronary Artery Disease, vol. 4, no. 10, pp. 899–904, 1993. View at Google Scholar
  106. S. P. Allen, M. R. Dashwood, A. H. Chester et al., “Influence of atherosclerosis on the vascular reactivity of isolated human epicardial coronary arteries to leukotriene C4,” Cardioscience, vol. 4, no. 1, pp. 47–54, 1993. View at Google Scholar
  107. A. Eaton, E. Nagy, M. Pacault, J. Fauconnier, and M. Back, “Cysteinyl leukotriene signaling through perinuclear CysLT1 receptors on vascular smooth muscle cells transduces nuclear calcium signaling and alterations of gene expression,” Journal of Molecular Medicine (Berlin, Germany), vol. 90, no. 10, pp. 1223–1231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Gronert, T. Martinsson-Niskanen, S. Ravasi, N. Chiang, and C. N. Serhan, “Selectivity of recombinant human leukotriene D4, leukotriene B4, and lipoxin A4 receptors with aspirin-triggered 15-epi-LXA4 and regulation of vascular and inflammatory responses,” The American Journal of Pathology, vol. 158, no. 1, pp. 3–9, 2001. View at Publisher · View at Google Scholar
  109. A. Papayianni, C. N. Serhan, and H. R. Brady, “Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells,” Journal of Immunology, vol. 156, no. 6, pp. 2264–2272, 1996. View at Google Scholar
  110. B. Uzonyi, K. Lotzer, S. Jahn et al., “Cysteinyl leukotriene 2 receptor and protease-activated receptor 1 activate strongly correlated early genes in human endothelial cells,” Proceedings of the National Academy of Sciences, vol. 103, no. 16, pp. 6326–6331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. I. Machida, H. Matsuse, Y. Kondo et al., “Cysteinyl leukotrienes regulate dendritic cell functions in a murine model of asthma,” Journal of Immunology, vol. 172, no. 3, pp. 1833–1838, 2004. View at Publisher · View at Google Scholar
  112. Z. Mallat, S. Besnard, M. Duriez et al., “Protective role of interleukin-10 in atherosclerosis,” Circulation Research, vol. 85, no. 8, pp. e17–e24, 1999. View at Google Scholar
  113. L. J. Pinderski Oslund, C. C. Hedrick, T. Olvera et al., “Interleukin-10 blocks atherosclerotic events in vitro and in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 12, pp. 2847–2853, 1999. View at Google Scholar
  114. L. J. Pinderski, M. P. Fischbein, G. Subbanagounder et al., “Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes,” Circulation Research, vol. 90, no. 10, pp. 1064–1071, 2002. View at Google Scholar
  115. G. Caligiuri, M. Rudling, V. Ollivier et al., “Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice,” Molecular Medicine, vol. 9, no. 1-2, pp. 10–17, 2003. View at Google Scholar
  116. M. Koller, W. Schonfeld, J. Knoller et al., “The metabolism of leukotrienes in blood plasma studied by high-performance liquid chromatography,” Biochimica et Biophysica Acta, vol. 833, no. 1, pp. 128–134, 1985. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Okubo, H. Takahashi, M. Sumitomo, K. Shindoh, and S. Suzuki, “Plasma levels of leukotrienes C4 and D4 during wheezing attack in asthmatic patients,” International Archives of Allergy and Applied Immunology, vol. 84, no. 2, pp. 149–155, 1987. View at Publisher · View at Google Scholar · View at Scopus
  118. M. C. Fishbein, D. Maclean, and P. R. Maroko, “Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution,” The American Journal of Pathology, vol. 90, no. 1, pp. 57–70, 1978. View at Google Scholar
  119. J. L. Romson, B. G. Hook, S. L. Kunkel, G. D. Abrams, M. A. Schork, and B. R. Lucchesi, “Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog,” Circulation, vol. 67, no. 5, pp. 1016–1023, 1983. View at Google Scholar
  120. F. K. Swirski and M. Nahrendorf, “Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure,” Science, vol. 339, no. 6116, pp. 161–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  121. R. L. Engler, G. W. Schmid-Schonbein, and R. S. Pavelec, “Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog,” The American Journal of Pathology, vol. 111, no. 1, pp. 98–111, 1983. View at Google Scholar
  122. S. R. Jolly, W. J. Kane, B. G. Hook, G. D. Abrams, S. L. Kunkel, and B. R. Lucchesi, “Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion,” American Heart Journal, vol. 112, no. 4, pp. 682–690, 1986. View at Google Scholar
  123. E. Porreca, C. Di Febbo, A. Di Sciullo et al., “Cysteinyl leukotriene D4 induced vascular smooth muscle cell proliferation: a possible role in myointimal hyperplasia,” Thrombosis and Haemostasis, vol. 76, no. 1, pp. 99–104, 1996. View at Google Scholar
  124. N. C. Ni, L. L. Ballantyne, J. D. Mewburn, and C. D. Funk, “Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 2, pp. 321–330, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. G. J. Gross, J. R. Falck, E. R. Gross, M. Isbell, J. Moore, and K. Nithipatikom, “Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited,” Cardiovascular Research, vol. 68, no. 1, pp. 18–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Adamek, S. Jung, C. Dienesch et al., “Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice,” European Journal of Pharmacology, vol. 571, no. 1, pp. 51–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Kitagawa, M. Matsumoto, and M. Hori, “Cerebral schemia in 5-lipoxygenase knockout mice,” Brain Research, vol. 1004, no. 1-2, pp. 198–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. P. K. Chatterjee, N. S. Patel, S. Cuzzocrea et al., “The cyclopentenone prostaglandin 15-deoxy-∆12,14-prostaglandin J2 ameliorates ischemic acute renal failure,” Cardiovascular Research, vol. 61, no. 3, pp. 630–643, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Cuzzocrea, A. Rossi, I. Serraino et al., “5-Lipoxygenase knockout mice exhibit a resistance to splanchnic artery occlusion shock,” Shock, vol. 20, no. 3, pp. 230–236, 2003. View at Google Scholar
  130. A. Gammelmark, S. Lundbye-Christensen, A. Tjonneland, E. B. Schmidt, K. Overvad, and M. S. Nielsen, “Interactions between 5-lipoxygenase polymorphisms and adipose tissue contents of arachidonic and eicosapentaenoic acids do not affect risk of myocardial infarction in middle-aged men and women in a Danish case-cohort study,” The Journal of Nutrition, vol. 147, no. 7, pp. 1340–1347, 2017. View at Publisher · View at Google Scholar
  131. A. Gammelmark, M. S. Nielsen, S. Lundbye-Christensen, A. Tjonneland, E. B. Schmidt, and K. Overvad, “Common polymorphisms in the 5-lipoxygenase pathway and risk of incident myocardial infarction: a Danish case-cohort study,” PLoS One, vol. 11, no. 11, article e0167217, 2016. View at Publisher · View at Google Scholar · View at Scopus
  132. J. A. Burke, R. Levi, Z. G. Guo, and E. J. Corey, “Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro,” The Journal of Pharmacology and Experimental Therapeutics, vol. 221, no. 1, pp. 235–241, 1982. View at Google Scholar
  133. W. A. Scott, N. A. Pawlowski, M. Andreach, and Z. A. Cohn, “Resting macrophages produce distinct metabolites from exogenous arachidonic acid,” The Journal of Experimental Medicine, vol. 155, no. 2, pp. 535–547, 1982. View at Google Scholar
  134. P. J. Piper, L. G. Letts, and S. A. Galton, “Generation of a leukotriene-like substance from porcine vascular and other tissues,” Prostaglandins, vol. 25, no. 4, pp. 591–599, 1983. View at Publisher · View at Google Scholar · View at Scopus
  135. G. Ertl, V. B. Fiedler, B. Bauer, P. Schwarzenberger, and K. Kochsiek, “Effects of nifedipine and indomethacin on leukotriene C4- and D4-induced coronary constriction at normal and reduced coronary perfusion in dogs,” Journal of Cardiovascular Pharmacology, vol. 8, no. 5, pp. 1078–1085, 1986. View at Google Scholar
  136. A. S. Evers, S. Murphree, J. E. Saffitz, B. A. Jakschik, and P. Needleman, “Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction,” The Journal of Clinical Investigation, vol. 75, no. 3, pp. 992–999, 1985. View at Publisher · View at Google Scholar
  137. H. Han, R. Tian, S. Neubauer, P. Gaudron, K. Hu, and G. Ertl, “Effects of LTD4 and its specific antagonist L-660,711 in isolated rat hearts with chronic myocardial infarction,” The American Journal of Physiology, vol. 266, no. 5, Part 2, pp. H2068–H2073, 1994. View at Google Scholar
  138. R. A. Hahn, B. R. MacDonald, E. Morgan et al., “Evaluation of LY203647 on cardiovascular leukotriene D4 receptors and myocardial reperfusion injury,” The Journal of Pharmacology and Experimental Therapeutics, vol. 260, no. 3, pp. 979–989, 1992. View at Google Scholar
  139. F. Wunder, H. Tinel, R. Kast et al., “Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor,” British Journal of Pharmacology, vol. 160, no. 2, pp. 399–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. N. C. Ni, D. Yan, L. L. Ballantyne et al., “A selective cysteinyl leukotriene receptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice,” The Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 3, pp. 768–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. W. Jiang, S. R. Hall, M. P. Moos et al., “Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury,” The American Journal of Pathology, vol. 172, no. 3, pp. 592–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Benned-Jensen and M. M. Rosenkilde, “Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants,” British Journal of Pharmacology, vol. 159, no. 5, pp. 1092–1105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. A. D. Qi, T. K. Harden, and R. A. Nicholas, “Is GPR17 a P2Y/leukotriene receptor? Examination of uracil nucleotides, nucleotide sugars, and cysteinyl leukotrienes as agonists of GPR17,” The Journal of Pharmacology and Experimental Therapeutics, vol. 347, no. 1, pp. 38–46, 2013. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Maekawa, W. Xing, K. F. Austen, and Y. Kanaoka, “GPR17 regulates immune pulmonary inflammation induced by house dust mites,” Journal of Immunology, vol. 185, no. 3, pp. 1846–1854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Maekawa, B. Balestrieri, K. F. Austen, and Y. Kanaoka, “GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11685–11690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Cosentino, L. Castiglioni, F. Colazzo et al., “Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction,” Journal of Cellular and Molecular Medicine, vol. 18, no. 9, pp. 1785–1796, 2014. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Ceruti, G. Villa, T. Genovese et al., “The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury,” Brain, vol. 132, Part 8, pp. 2206–2218, 2009. View at Publisher · View at Google Scholar · View at Scopus