Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017, Article ID 5468023, 26 pages
https://doi.org/10.1155/2017/5468023
Review Article

Adipokine Contribution to the Pathogenesis of Osteoarthritis

Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, 14080 Mexico City, Mexico

Correspondence should be addressed to Janette Furuzawa-Carballeda; moc.liamg@awazurufj

Received 13 December 2016; Revised 25 February 2017; Accepted 7 March 2017; Published 9 April 2017

Academic Editor: Elaine Hatanaka

Copyright © 2017 Daniel Azamar-Llamas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Hart, D. V. Doyle, and T. D. Spector, “Association between metabolic factors and knee osteoarthritis in women: the Chingford study,” The Journal of Rheumatology, vol. 22, no. 6, pp. 1118–1123, 1995. View at Google Scholar
  2. R. M. Aspden, B. A. Scheven, and J. D. Hutchison, “Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism,” Lancet, vol. 357, no. 9262, pp. 1118–1120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Parimisetty, A. C. Dorsemans, R. Awada, P. Ravanan, N. Diotel, and C. Lefebvre d'Hellencourt, “Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research,” Journal of Neuroinflammation, vol. 13, no. 1, p. 67, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Maury, K. Ehala-Aleksejev, Y. Guiot, R. Detry, A. Vandenhooft, and S. M. Brichard, “Adipokines oversecreted by omental adipose tissue in human obesity,” American Journal of Physiology. Endocrinology and Metabolism, vol. 293, no. 3, pp. E565–E565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. M. Gierman, F. van der Ham, A. Koudijs et al., “Metabolic stress-induced inflammation plays a major role in the development of osteoarthritis in mice,” Arthritis and Rheumatism, vol. 64, no. 4, pp. 1172–1181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. N. N. Pathak, M. C. Lingaraju, V. Balaganur et al., “Anti-inflammatory and chondroprotective effects of atorvastatin in a cartilage explant model of osteoarthritis,” Inflammation Research, vol. 64, no. 3-4, pp. 161–169, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Klein, D. Allison, S. Heymsfield et al., “Waist circumference and cardiometabolic risk: a consensus treatment from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NASSO, The Obesity Society; the American Society of Nutrition; and the American Diabetes Association,” Diabetes Care, vol. 30, no. 6, pp. 1647–1652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Kintscher, M. Hartge, K. Hess et al., “T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 7, pp. 1304–1310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Raucci, F. Rusolo, A. Sharma, G. Colonna, G. Castello, and S. Costantini, “Functional and structural features of adipokine family,” Cytokine, vol. 61, no. 1, pp. 1–14, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. C. N. Lumeng, J. B. DelProposto, D. J. Westcott, and A. R. Saltiel, “Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes,” Diabetes, vol. 57, no. 12, pp. 3239–3246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Powell, A. J. Teichtahl, A. E. Wluka, and F. M. Cicuttini, “Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors,” British Journal of Sports Medicine, vol. 39, no. 1, pp. 4–5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Cooper, H. Inskip, P. Croft et al., “Individual risk factors for hip osteoarthritis: obesity, hip injury, and physical activity,” American Journal of Epidemiology, vol. 147, no. 6, pp. 516–522, 1998. View at Publisher · View at Google Scholar
  13. D. T. Felson, J. J. Anderson, A. Naimark, A. M. Walker, and R. F. Meenan, “Obesity and knee osteoarthritis. The Framingham study,” Annals of Internal Medicine, vol. 109, no. 1, pp. 18–24, 1988. View at Publisher · View at Google Scholar
  14. F. Guilak, B. Fermor, F. J. Keefe et al., “The role of biomechanics and inflammation in cartilage injury and repair,” Clinical Orthopaedics and Related Research, vol. 423, pp. 17–26, 2004. View at Publisher · View at Google Scholar
  15. F. M. Cicuttini, J. R. Baker, and T. D. Spector, “The association of obesity with osteoarthritis of the hand and knee in women: a twin study,” The Journal of Rheumatology, vol. 23, no. 7, pp. 1221–1226, 1996. View at Google Scholar
  16. D. Y. Cheon, J. G. Kang, S. J. Lee et al., “Serum chemerin levels are associated with visceral adiposity, independent of waist circumference, in newly diagnosed type 2 diabetic subjects,” Yonsei Medical Journal, vol. 58, no. 2, pp. 319–325, 2017. View at Publisher · View at Google Scholar
  17. H. K. Park, M. K. Kwak, H. J. Kim, and R. S. Ahima, “Linking resistin, inflammation, and cardiometabolic diseases,” The Korean Journal of Internal Medicine, vol. 32, no. 2, pp. 239–247, 2017. View at Publisher · View at Google Scholar
  18. D. R. Kang, D. Yadav, S. B. Koh, J. Y. Kim, and S. V. Ahn, “Impact of serum leptin to adiponectin ratio on regression of metabolic syndrome in high-risk individuals: the ARIRANG study,” Yonsei Medical Journal, vol. 58, no. 2, pp. 339–346, 2017. View at Publisher · View at Google Scholar
  19. H. P. Kopp, K. Krzyzanowska, M. Möhlig, J. Spranger, A. F. Pfeiffer, and G. Schernthaner, “Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women,” International Journal of Obesity, vol. 29, no. 7, pp. 766–771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Fukuhara, M. Matsuda, M. Nishizawa et al., “Visfatin: a protein secreted by visceral fat that mimics the effects of insulin,” Science, vol. 307, no. 5708, pp. 426–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Schäffler, M. Neumeier, H. Herfarth, A. Fürst, J. Schölmerich, and C. Büchler, “Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue,” Biochimica et Biophysica Acta, vol. 1732, no. 1-3, pp. 96–102, 2005. View at Google Scholar
  22. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Baumann, K. Morella, D. White et al., “The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8374–8378, 1996. View at Google Scholar
  24. A. D. Kline, G. W. Becker, L. M. Churgay et al., “Leptin is a four-helix bundle: secondary structure by NMR,” FEBS Letters, vol. 407, no. 2, pp. 239–242, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Vadacca, D. P. Margiotta, L. Navarini, and A. Afeltra, “Leptin in immuno-rheumatological diseases,” Cellular & Molecular Immunology, vol. 8, no. 3, pp. 203–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Neumann, S. Junker, G. Schett, K. Frommer, and U. Müller-Ladner, “Adipokines in bone disease,” Nature Reviews. Rheumatology, vol. 12, no. 5, pp. 296–302, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Faggioni, G. Fantuzzi, J. Fuller, C. A. Dinarello, K. R. Feingold, and C. Grunfeld, “IL-1β mediates leptin induction during inflammation,” The American Journal of Physiology, vol. 274, no. 1Pt2, pp. R204–R208, 1998. View at Google Scholar
  28. K. Vuolteenaho, A. Koskinen, M. Kukkonen et al., “Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage mediators role of NO in leptin induced PGE2, IL-6 and IL-8 production,” Mediators of Inflammation, vol. 2009, p. 345838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Richter, T. Trzeciak, M. Owecki, A. Pucher, and J. Kaczmarczyk, “The role of adipocytokines in the pathogenesis of knee joint osteoarthritis,” International Orthopaedics, vol. 39, no. 6, pp. 1211–1217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Thijseen, A. van Caam, and P. M. van der Kraan, “Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis,” Rheumatology, vol. 54, no. 4, pp. 588–600, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. C. T. Montague, I. S. Farooqi, J. P. Whitehead et al., “Congenital leptin deficiency is associated with severe early onset obesity in humans,” Nature, vol. 387, no. 6636, pp. 903–908, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Clément, C. Vaisse, N. Lahlou et al., “A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction,” Nature, vol. 392, no. 6674, pp. 398–401, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Bjørbæk, J. K. Elmquist, J. D. Frantz, S. E. Shoelson, and J. S. Flier, “Identification of Socs3 as a potential mediator of central leptin resistance,” Molecular Cell, vol. 1, no. 4, pp. 619–625, 1988. View at Google Scholar
  34. C. Bjørbæk, K. El-Haschimi, J. D. Frantz, and J. S. Flier, “The role of Socs3 in leptin signaling and leptin resistance,” The Journal of Biological Chemistry, vol. 274, no. 42, pp. 30059–30065, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bjørbæk, H. J. Lavery, S. H. Bates et al., “SOCS-3 mediates feedback inhibition of the leptin receptor via Tyr 985,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 40649–40657, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. Howard, B. J. Cave, L. J. Oksanen, I. Tzameli, C. Bjørbaek, and J. S. Flier, “Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3,” Nature Medicine, vol. 10, no. 7, pp. 734–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Pedroso, D. C. Bounfiglio, C. Ll et al., “Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity,” Molecular Metabolism, vol. 3, no. 6, pp. 608–618, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. L. A. Tartaglia, M. Dembski, X. Weng et al., “Identification and expression cloning of a leptin receptor, OB-R,” Cell, vol. 83, no. 7, pp. 1263–1271, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Friedman, “Obesity: causes and control of excess body fat,” Nature, vol. 459, no. 7245, pp. 340–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Wasim, F. R. Awan, S. S. Najam, A. R. Khan, and H. N. Khan, “Role of leptin deficiency, inefficiency, and leptin receptors in obesity,” Biochemical Genetics, vol. 54, no. 5, pp. 565–572, 2016. View at Publisher · View at Google Scholar · View at Scopus
  41. G. M. Lord, G. Matarese, J. K. Howard, R. J. Baker, S. R. Bloom, and R. I. Lechler, “Leptin modulates the T cell immune response and reverses starvation-induced immunosuppresion,” Nature, vol. 394, no. 6696, pp. 897–901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Matarese, S. Moschos, and C. S. Mantzoros, “Leptin in immunology,” Journal of Immunology, vol. 174, no. 6, pp. 3137–3142, 2005. View at Publisher · View at Google Scholar
  43. C. Martín-Romero and V. Sánchez-Margalet, “Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: possible role of Sam68,” Cellular Immunology, vol. 212, no. 2, pp. 83–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Sánchez-Margalet and C. Martin-Romero, “Human leptin signaling in human peripheral blood mononuclear cells: activation of the JAK-STAT pathway,” Cellular Immunology, vol. 211, no. 1, pp. 30–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Sánchez-Margalet, C. Martin-Romero, C. Gonzalez-Yanes, R. Goberna, J. Rodríguez-Baño, and M. A. Muniain, “Leptin receptor (Ob-R) expression is induced in peripheral blood mononuclear cells by in vitro activation and in vivo HIV-infected patients,” Clinical and Experimental Immunology, vol. 129, no. 1, pp. 119–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Hekerman, J. Zeidler, S. Bamberg-Lemper et al., “Pleiotropy of leptin receptor signaling is defined by distinct roles of the intracellular tyrosines,” The FEBS Journal, vol. 272, no. 1, pp. 109–119, 2005. View at Publisher · View at Google Scholar
  47. E. Papathanassoglou, K. El-Haschimi, X. C. Li, G. Matarese, T. Strom, and C. Mantzoros, “Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice,” Journal of Immunology, vol. 176, no. 12, pp. 7745–7752, 2006. View at Publisher · View at Google Scholar
  48. E. Mansour, F. G. Pereira, E. P. Araújo et al., “Leptin inhibits apoptosis in thymus through a Janus kinase-2-independent, insulin receptor substrate-1/phosphatidylinositol-3 kinase-dependent pathway,” Endocrinology, vol. 147, no. 11, pp. 5470–5479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Montecucco, G. Bianchi, P. Gnerre, M. Bertolotto, F. Dallegri, and L. Ottonello, “Induction of neutrophil chemotaxis by leptin: crucial role for p38 and Src kinases,” Annals of the new York Academy of Sciences, vol. 1069, no. 1, pp. 463–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Chan, S. Blüher, N. Yiannakouris, M. A. Suchard, J. Kratzsch, and C. S. Mantzoros, “Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: observational and interventional studies in humans,” Diabetes, vol. 51, no. 7, pp. 2105–2112, 2002. View at Publisher · View at Google Scholar
  51. H. Knobelspies, J. Zeidler, P. Hekerman, S. Bamberg-Lemper, and W. Becker, “Mechanism of attenuation of leptin signaling under chronic ligand stimulation,” BMC Biochemistry, vol. 11, no. 1, p. 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. P. C. Tsiotra, E. Boutati, G. Dimitriadis, and S. A. Raptis, “High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells,” BioMed Research International, vol. 2013, Article ID 487081, p. 10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Jahn, J. J. Spielau, C. Brandsh et al., “Decreased NK cell functions in obesity can be reactivated by fat mass reduction,” Obesity, vol. 23, no. 11, pp. 2233–2241, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Martín-Romero, J. Santos-Alvarez, R. Goberna, and V. Sánchez-Margalet, “Human leptin enhances activation and proliferation of human circulating T lymphocytes,” Cellular Immunology, vol. 199, no. 1, pp. 15–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Margiotta, L. Navarini, M. Vadacca et al., “Relationship between leptin and regulatory T cells in systemic lupus erythematosus: preliminary results,” European Review for Medical and Pharmacological Sciences, vol. 20, no. 4, pp. 636–641, 2016. View at Google Scholar
  56. A. Booth, A. Magnuson, J. Fouts, and M. Foster, “Adipose tissue, obesity and adipokines: role in cancer promotion,” Hormone Molecular Biology and Clinical Investigation, vol. 21, no. 1, pp. 57–74, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Halleux, M. Takahasi, M. Delporte et al., “Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue,” Biochemical and Biophysical Research Communications, vol. 288, no. 5, pp. 1102–1107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Waki, T. Yamauchi, J. Kamon et al., “Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 40352–40363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. T.-S. Tsao, H. E. Murrey, C. Hug, D. H. Lee, and H. F. Lodish, “Oligomerization state-dependent activation of NF-kB signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30),” The Journal of Biological Chemistry, vol. 277, no. 33, pp. 29359–29362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. T. S. Tsao, E. Tomas, H. E. Murrey et al., “Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways,” The Journal of Biological Chemistry, vol. 278, no. 50, pp. 50810–50817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. U. B. Pajvani, X. Du, T. P. Combs et al., “Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9073–9085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. D. T. Ashley, E. P. O’Sullivan, C. Davenport et al., “Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects,” Metabolism, vol. 60, no. 7, pp. 994–1000, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Reverchon, C. Ramé, M. Bertoldo, and J. Dupont, “Adipokines and the female reproductive tract,” International Journal of Endocrinology, vol. 2014, Article ID 232454, p. 10, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Yamauchi, J. Kamon, H. Waki et al., “The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity,” Nature Medicine, vol. 7, no. 8, pp. 941–946, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Yamauchi, J. Kamon, H. Waki et al., “Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis,” The Journal of Biological Chemistry, vol. 278, no. 4, pp. 2461–2468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Minokoshi, Y. B. Kim, O. D. Peroni et al., “Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase,” Nature, vol. 415, no. 6869, pp. 339–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Chen, Y. W. Wu, H. Lu, Y. Guo, and Z. H. Tang, “Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL-1AMPK signaling pathway,” Biochemical and Biophysical Research Communications, vol. 461, no. 2, pp. 237–242, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Ouchi, S. Kihara, Y. Arita et al., “Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin,” Circulation, vol. 100, no. 25, pp. 2473–2476, 1999. View at Publisher · View at Google Scholar
  70. N. Ouchi, S. Kihara, Y. Arita et al., “Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway,” Circulation, vol. 102, no. 11, pp. 1296–1301, 2000. View at Publisher · View at Google Scholar
  71. Y. Kamada, T. Takehara, and N. Hayashi, “Adipocytokines in liver disease,” Journal of Gastroenterology, vol. 43, no. 11, pp. 811–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Ouchi, S. Kihara, Y. Arita et al., “Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages,” Circulation, vol. 103, no. 8, pp. 1057–1063, 2001. View at Publisher · View at Google Scholar
  73. K. Ohashi, J. L. Parker, N. Ouchi et al., “Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype,” The Journal of Biological Chemistry, vol. 285, no. 9, pp. 6153–6160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. M. Steppan, E. J. Brown, C. M. Wright et al., “A family of tissue-specific resistin-like molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 502–506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. M. W. Rajala, Y. Qi, H. R. Patel et al., “Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting,” Diabetes, vol. 53, no. 7, pp. 1671–1679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. B. H. Chen, Y. Song, E. L. Ding et al., “Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts,” Diabetes Care, vol. 32, no. 2, pp. 329–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. H. Lee, J. L. Chan, N. Yiannakouris et al., “Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects,” The Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4848–4856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Lehrke, M. P. Reilly, S. C. Millington, N. Iqbal, D. J. Rader, and M. A. Lazar, “An inflammatory cascade leading to hyperresistinemia in humans,” PLoS Medicine, vol. 1, no. 2, article e45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. M. S. Burnett, C. W. Lee, T. D. Kinnaird et al., “The potential role of resistin in atherogenesis,” Atherosclerosis, vol. 182, no. 2, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Benomar, A. Gertler, P. De Lacy et al., “Central resistin overexposure induces insulin resistance through toll-like receptor 4,” Diabetes, vol. 62, no. 1, pp. 102–114, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Tarkowski, J. Bjersing, A. Shestakow, and M. I. Bokarewa, “Resistin competes with lipopolysaccharide for binding to toll-like receptor 4,” Journal of Cellular and Molecular Medicine, vol. 14, no. 6B, pp. 1419–1431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Lee, H. C. Lee, Y. W. Kwon et al., “Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes,” Cell Metabolism, vol. 19, no. 3, pp. 484–497, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. E. A. Boström, M. Svensson, S. Andersson et al., “Resistin and insulin/insulin-like growth factor signaling in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 63, no. 10, pp. 2894–2904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. H. Shen, L. Zhang, Y. Gan et al., “Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells,” The Journal of Biological Chemistry, vol. 281, no. 12, pp. 7727–7736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Gao, C. Chang Chua, Z. Chen et al., “Resistin, an adipocytokine offers protection against acute myocardial infarction,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 5, pp. 601–609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Rodríguez-Pacheco, R. Vázquez-Martínez, A. J. Martínez-Fuentes et al., “Resistin regulates pituitary somatotrope cell function through the activation of multiple signaling pathways,” Endocrinology, vol. 150, no. 10, pp. 4643–4652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Samal, Y. Sun, G. Stearns, C. Xie, S. Suggs, and I. McNiece, “Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor,” Molecular and Cellular Biology, vol. 14, no. 2, pp. 1431–1437, 1994. View at Publisher · View at Google Scholar
  88. R. Adya, B. K. Tan, A. Punn, J. Chen, and H. S. Randeva, “Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis,” Cardiovascular Research, vol. 78, no. 2, pp. 356–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Spinnler, T. Gorski, K. Stolz et al., “The adipocytokine Nampt and its product NMN have no effect on beta-cell survival but potentiate glucose stimulated insulin secretion,” PLoS One, vol. 8, no. 1, article e54106, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Santangelo, C. Filesi, R. Vari et al., “Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: a possible involvement of reduced levels of circulating visfatin,” Journal of Endocrinological Investigation, vol. 39, no. 11, pp. 1295–1301, 2016. View at Publisher · View at Google Scholar
  91. M. J. Yoon, M. Yoshida, S. Johnson et al., “SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice,” Cell Metabolism, vol. 21, no. 5, pp. 706–717, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. W. S. Huang, C. N. Chen, C. I. Sze, and C. C. Teng, “Visfatin induces stromal cell-derived factor-1 expression by β1 integrin signaling in colorectal cancer cells,” Journal of Cellular Physiology, vol. 228, no. 5, pp. 1017–1024, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. R. J. Buldak, M. Gowarzewski, L. Buldak et al., “Viability and oxidative response of human colorectal HCT-11 cancer cells treated with visfatin/eNampt in vitro,” Journal of Physiology and Pharmacology, vol. 66, no. 4, pp. 557–566, 2015. View at Google Scholar
  94. S. Nagpal, S. Patel, H. Jacobe et al., “Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin,” The Journal of Investigative Dermatology, vol. 109, no. 1, pp. 91–95, 1997. View at Publisher · View at Google Scholar
  95. V. Wittamer, J. Franssen, M. Vulcano et al., “Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids,” The Journal of Experimental Medicine, vol. 198, no. 7, pp. 977–985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Zylla, M. Pietzner, J. P. Kühn et al., “Serum chemerin is associated with inflammatory and metabolic parameters-results of a population-based study,” Obesity, vol. 25, no. 2, pp. 468–475, 2017. View at Publisher · View at Google Scholar
  97. I. Gantz, Y. Kinda, Y. K. Yang, D. E. Miller, H. A. Dierick, and T. Yamada, “Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors,” Cytogenetics and Cell Genetics, vol. 74, no. 4, pp. 286–290, 1996. View at Publisher · View at Google Scholar
  98. S. Roh, S. H. Song, K. C. Choi et al., “Chemerin–a new adipokine that modulates adipogenesis via its own receptor,” Biochemical and Biophysical Research Communications, vol. 362, no. 4, pp. 1013–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Fan, H. Kyaw, K. Su et al., “Cloning and characterization of a novel human chemokine receptor,” Biochemical and Biophysical Research Communications, vol. 243, no. 1, pp. 264–268, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Barnea, W. Strapps, G. Herrada et al., “The genetic design of signaling cascades to record receptor activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 64–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. K. B. Goralski, T. C. McCarthy, E. A. Hanniman et al., “Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism,” The Journal of Biological Chemistry, vol. 282, no. 38, pp. 28175–28188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. C. G. Kostopoulos, S. G. Spiroglou, J. N. Varakis, E. Apostolakis, and H. H. Papadaki, “Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis?” BMC Cardiovascular Disorders, vol. 14, no. 1, p. 56, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Kaur, R. Adya, B. K. Tan, J. Chen, and H. S. Randeva, “Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis,” Biochemical and Biophysical Research Communications, vol. 391, no. 4, pp. 1762–1768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Pfau, A. Bachmann, U. Lössner et al., “Serum levels of the adipokine chemerin in relation to renal function,” Diabetes Care, vol. 33, no. 1, pp. 171–173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Kjeldsen, J. B. Cowland, and N. Borregaard, “Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 272–283, 2000. View at Google Scholar
  106. L. Kjeldsen, D. F. Bainton, H. Sengelov, and N. Borregaard, “Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils,” Blood, vol. 83, no. 3, pp. 799–807, 1994. View at Google Scholar
  107. S. D. Mesquita, A. C. Ferreira, A. M. Falcao et al., “Lipocalin 2 modulates the cellular response to amyloid beta,” Cell Death and Differentiation, vol. 21, no. 10, pp. 1588–1599, 2014. View at Publisher · View at Google Scholar · View at Scopus
  108. K. M. Bennett, J. Liu, C. Hoelting, and J. Stoll, “Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23,” Molecular and Cellular Biochemistry, vol. 352, no. 1-2, pp. 143–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Hvidberg, C. Jacobsen, R. K. Strong, J. B. Cowland, S. K. Moestrup, and N. Borregaard, “The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake,” FEBS Letters, vol. 579, no. 3, pp. 773–777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Wada, “Vaspin: a novel serpin with insulin-sensitizing effects,” Expert Opinion on Investigational Drugs, vol. 17, no. 3, pp. 327–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Phalitakul, M. Okada, Y. Hara, and H. Yamawaki, “Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-kB and PKCθ activation in cultured rat vascular smooth muscle cells,” Pharmacological Research, vol. 64, no. 5, pp. 493–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. O. G. Shaker and N. A. Sadik, “Vaspin gene in rat adipose tissue: relation to obesity-induced insulin resistance,” Molecular and Cellular Biochemistry, vol. 373, no. 1-2, pp. 229–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Nakatsuka, J. Wada, I. Iseda et al., “Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex,” Diabetes, vol. 61, no. 11, pp. 2823–2832, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Liu, Y. Dong, T. Wang et al., “Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA.hy926 cells,” Diabetes Research and Clinical Practice, vol. 103, no. 3, pp. 482–488, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Komiya, Y. Tanigawa, and S. Hirohashi, “Cloning of the novel gene intelectin, which is expressed in intestinal Paneth cells in mice,” Biochemical and Biophysical Research Communications, vol. 251, no. 3, pp. 759–762, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Herder, D. M. Ouwens, M. Carstensen et al., “Adiponectin may mediate the association between omentin, circulating lipids and insulin sensitivity: results from the KORA F4 study,” European Journal of Endocrinology, vol. 172, no. 4, pp. 423–432, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada, and Y. Hara, “Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cell,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 339–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Oh-I, H. Shimizu, T. Satoh et al., “Identification of nesfatin-1 as a satiety molecule in the hypothalamus,” Nature, vol. 443, no. 7112, pp. 709–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Stengel, M. Goebel, I. Yakubov et al., “Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa,” Endocrinology, vol. 150, no. 1, pp. 232–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Tsuchiya, H. Shimizu, M. Yamada et al., “Fasting concentrations of nesfatin-1 are negatively correlated with body mass index in non-obese males,” Clinical Endocrinology, vol. 73, no. 4, pp. 484–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. C. Ayada, Ü. Toru, and Y. Korkut, “Nesfatin-1 and its effects on different systems,” Hippokratia, vol. 19, no. 1, pp. 4–10, 2015. View at Google Scholar
  122. E. Ishida, K. Hashimoto, H. Shimizu et al., “Nesfatin-1 induces the phosphorylation levels of cAMP response element-binding protein for intracellular signaling in a neural cell line,” PLoS One, vol. 7, no. 12, article e50918, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. G. C. Brailoiu, S. L. Dun, E. Brailoiu et al., “Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain,” Endocrinology, vol. 148, no. 10, pp. 5088–5094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. G. C. Brailoiu, E. Deliu, A. A. Tica et al., “Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats,” Journal of Neurochemistry, vol. 126, no. 6, pp. 739–748, 2013. View at Publisher · View at Google Scholar · View at Scopus
  125. P. Pottie, N. Presle, B. Terlain, P. Netter, D. Mainard, and F. Berenbaum, “Obesity and osteoarthritis: more complex than predicted,” Annals of the Rheumatic Diseases, vol. 65, no. 11, pp. 1403–1405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Iwata, H. Ochi, Y. Hara et al., “Initial responses of articular tissues in a murine high-fat diet-induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain,” PLoS One, vol. 8, no. 4, article e60706, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. P. J. Francin, C. Guillaume, A. C. Humbert et al., “Association between the chondrocyte phenotype and the expression of adipokines and their receptors: evidence for a role of leptin but not adiponectin in the expression of cartilage-specific markers,” Journal of Cellular Physiology, vol. 226, no. 11, pp. 2790–2797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. T. M. Griffin, J. L. Hebner, V. B. Kraus, and F. Guilak, “Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis,” Arthritis and Rheumatism, vol. 60, no. 10, pp. 2935–2944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Lago, R. Gómez, M. Otero et al., “A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes,” Osteoarthritis and Cartilage, vol. 16, no. 9, pp. 1101–1109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. J. P. Bao, W. P. Chen, J. Feng et al., “Leptin plays a catabolic role on articular cartilage,” Molecular Biology Reports, vol. 37, no. 7, pp. 3265–3272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. K. O. Yaykasli, O. F. Hatipoglu, E. Yaykasli et al., “Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-kB signaling pathways in human chondrocytes,” Cell Biology International, vol. 39, no. 1, pp. 104–112, 2015. View at Publisher · View at Google Scholar · View at Scopus
  132. W. Hui, G. J. Litherland, M. S. Elias et al., “Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation ad activation of matrix metalloproteinases,” Annals of the Rheumatic Diseases, vol. 71, no. 3, pp. 455–462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Conde, M. Scotece, V. López et al., “Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes,” PLoS One, vol. 7, no. 12, article e52533, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. X. Zhao, Y. Dong, J. Zhang et al., “Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells,” Cell Death & Disease, vol. 7, no. 4, article e2188, 2016. View at Publisher · View at Google Scholar
  135. M. S. Mutabaruka, A. Aissa, A. Delalandre, M. Lavigne, and D. Lajeunesse, “Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression,” Arthritis Research & Therapy, vol. 12, no. 1, article R20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Honsawek and M. Chayanupatkul, “Correlation of plasma and synovial fluid adiponectin with knee osteoarthritis severity,” Archives of Medical Research, vol. 41, no. 8, pp. 593–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. T. N. De Boer, W. E. van Spil, A. M. Huisman et al., “Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage,” Osteoarthritis and Cartilage, vol. 20, no. 8, pp. 846–853, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Fowler-Brown, D. H. Kim, L. Shi et al., “The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults,” Arthritis & Rhematology, vol. 67, no. 1, pp. 169–175, 2015. View at Publisher · View at Google Scholar · View at Scopus
  139. P. Zhang, Z. H. Zhong, H.-T. Yu, and B. Liu, “Significance of increased leptin expression in osteoarthritis patients,” PLoS One, vol. 10, no. 4, article e0123224, 2015. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Bas, A. Finckh, G. J. Puskas et al., “Adipokines correlate with pain in lower limb osteoarthritis: different associations in hip and knee,” International Orthopaedics, vol. 38, no. 12, pp. 2577–2583, 2014. View at Publisher · View at Google Scholar · View at Scopus
  141. J. H. Ku, C. K. Lee, B. S. Joo et al., “Correlation of synovial fluid leptin concentrations with the severity of osteoarthritis,” Clinical Rheumatology, vol. 28, no. 12, pp. 1431–1435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. C. A. Karvonen-Gutierrez, S. D. Harlow, P. Mancuso, J. Jacobson, C. F. Mendes de Leon, and B. Nan, “Association of leptin levels with radiographic knee osteoarthritis among a cohort of midlife women,” Arthritis Care and Research, vol. 65, no. 6, pp. 936–944, 2013. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Gandhi, M. Takahashi, H. Smith, R. Rizek, and N. N. Mahomed, “The synovial fluid adiponectin–leptin ratio predicts pain with knee osteoarthritis,” Clinical Rheumatology, vol. 29, no. 11, pp. 1223–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. L. K. King, H. Henneicke, M. J. Seibel, L. March, and A. Anandacoomarasmy, “Association of adipokines and joint biomarkers with cartilage-modifying effects of weight loss in obese subjects,” Osteoarthritis and Cartilage, vol. 23, no. 3, pp. 397–404, 2015. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Zheng, J. Xu, S. Xu et al., “Association between circulating adipokines, radiographic changes, and knee cartilage volume in patients with knee osteoarthritis,” Scandinavian Journal of Rheumatology, vol. 44, no. 3, pp. 224–229, 2015. View at Publisher · View at Google Scholar · View at Scopus
  146. P. A. Berry, S. W. Jones, F. M. Cicuttini, A. E. Wluka, and R. A. Maciewicz, “Temporal relationship between serum adipokines, biomarkers of bone and cartilage turnover, and cartilage volume loss in a population with clinical knee osteoarthritis,” Arthritis and Rheumatism, vol. 63, no. 3, pp. 700–707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Martel-Pelletier, J. P. Raynauld, M. Dorais, F. Abram, and J. Pelletier, “The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: a post hoc analysis,” Rheumatology, vol. 55, no. 4, pp. 680–688, 2016. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Staikos, A. Ververidis, G. Drosos, V. G. Manolopoulos, D. A. Verettas, and A. Tavridou, “The association of adipokine levels in plasma and synovial fluid with the severity of knee osteoarthritis,” Rheumatology, vol. 52, no. 6, pp. 1077–1083, 2013. View at Publisher · View at Google Scholar · View at Scopus
  149. H. M. Choi, Y. A. Lee, S. H. Lee et al., “Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and metalloproteinase-13 expression in fibroblasts-like synoviocytes more than proinflammatory mediators,” Arthritis Research & Therapy, vol. 11, no. 6, article R161, 2009. View at Google Scholar
  150. P. J. Francin, A. Abot, C. Guillaume et al., “Association between adiponectin and cartilage degradation in human osteoarthritis,” Osteoarthritis and Cartilage, vol. 22, no. 3, pp. 519–526, 2014. View at Publisher · View at Google Scholar · View at Scopus
  151. H. T. Chen, H. K. Tsou, J. C. Chen, J. M. Shih, Y. J. Chen, and C. H. Tang, “Adiponectin enhances intercellular adhesion molecule-1 expression and promotes monocyte adhesion in human synovial fibroblasts,” PLoS One, vol. 9, no. 3, article e92741, 2014. View at Publisher · View at Google Scholar · View at Scopus
  152. E. H. Kang, Y. J. Lee, T. K. Kim et al., “Adiponectin is a potential catabolic mediator in osteoarthritis cartilage,” Arthritis Research & Therapy, vol. 12, no. 6, article R231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Junker, K. W. Frommer, G. Krumbholz et al., “Expression of adipokines in osteoarthritis osteophytes and their effect on osteoblasts,” Matrix Biology, 2016. View at Publisher · View at Google Scholar
  154. T. H. Chen, L. Chen, M. S. Hsieh, C. P. Chang, D. T. Chou, and S. H. Tsai, “Evidence for a protective role for adiponectin in osteoarthritis,” Biochimica et Biophysica Acta, vol. 2006, no. 8, pp. 711–718, 1762. View at Publisher · View at Google Scholar · View at Scopus
  155. M. Kumada, S. Kihara, N. Ouchi et al., “Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages,” Circulation, vol. 109, no. 17, pp. 2046–2049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. T. Al, M. Beekhuizen, M. C. t Hart et al., “Cytokine profiles in the joint depend on pathology but are different between synovial fluid cartilage tissue and cultured chondrocytes,” Arthritis Research & Therapy, vol. 16, no. 5, p. 441, 2014. View at Publisher · View at Google Scholar
  157. F. Lovren, Y. Pan, A. Quan et al., “Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 299, no. 3, pp. H656–H663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. P. Mandal, B. T. Pratt, M. Barnes, M. R. McMullen, and L. E. Nagy, “Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin,” The Journal of Biological Chemistry, vol. 286, no. 15, pp. 13460–13469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Takemura, N. Ouchi, R. Shibata et al., “Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies,” The Journal of Clinical Investigation, vol. 117, no. 2, pp. 375–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. D. Hao, M. Li, Z. Wu, Y. Duan, D. Li, and G. Qiu, “Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis,” Rheumatology International, vol. 31, no. 11, pp. 1433–1437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. J. L. Huebner, L. R. Landerman, T. J. Somers et al., “Exploratory secondary analyses of a cognitive-behavioral intervention for knee osteoarthritis demonstrate reduction in biomarkers of adipocyte inflammation,,” Osteoarthritis Cartilage, vol. 24, no. 9, pp. 1528–1534, 2016. View at Publisher · View at Google Scholar · View at Scopus
  162. K. Wang, J. Xu, J. Cai et al., “Serum levels of interleukin-17 and adiponectin are associated with infrapatellar fat pad volume and signal intensity alteration in patients with knee osteoarthritis,” Arthritis Research & Therapy, vol. 18, no. 1, p. 193, 2016. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Filková, M. Lisková, H. Hulejová et al., “Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis,” Annals of the Rheumatic Diseases, vol. 68, no. 2, pp. 295–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. E. Yusuf, A. Ioan-Facsinay, J. Bijsterbosch et al., “Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis,” Annals of the Rheumatic Diseases, vol. 70, no. 7, pp. 1282–1284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. E. Yusuf, R. G. Nelissen, A. Ioan-Facsinay et al., “Association between weight or body mass index and hand osteoarthritis: a systemic review,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 761–765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Massengale, B. Lu, J. J. Pan, J. N. Katz, and D. H. Solomon, “Adipokine hormones and hand osteoarthritis: radiographic severity and pain,” PLoS One, vol. 7, no. 10, article e47860, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. R. Gandhi, M. Takahashi, R. Rizek, O. Dessouki, and N. N. Mahomed, “Obesity-related adipokines and shoulder osteoarthritis,” The Journal of Rheumatology, vol. 39, no. 10, pp. 2046–2048, 2012. View at Publisher · View at Google Scholar · View at Scopus
  168. R. Gandhi, A. V. Perruccio, R. Rizek, O. Dessouki, H. M. Evans, and N. N. Mahomed, “Obesity-related adipokines predict patient-reported shoulder pain,” Obesity Facts, vol. 6, no. 6, pp. 536–541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Gandhi, M. Kapoor, N. N. Mohamed, and A. V. Perruccio, “A comparison of obesity related adipokine concentrations in knee and shoulder osteoarthritis patients,” Obesity Research & Clinical Practice, vol. 9, no. 4, pp. 420–423, 2015. View at Publisher · View at Google Scholar · View at Scopus
  170. J. F. Nishimuta and M. E. Levenston, “Meniscus is more susceptible than cartilage to catabolic and anti-anabolic effects of adipokines,” Osteoarthritis and Cartilage, vol. 23, no. 9, pp. 1551–1562, 2015. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Koskinen, K. Voulteenaho, T. Moilanen, and E. Moilanen, “Resistin as a factor in osteoarthritis: synovial fluid resistin concentrations correlate positively with interleukin 6 and matrix metalloproteinases MMP-1 and MMP-3,” Scandinavian Journal of Rheumatology, vol. 43, no. 3, pp. 249–253, 2014. View at Publisher · View at Google Scholar · View at Scopus
  172. T. Poonpet and S. Honsawek, “Adipokines: biomarkers for osteoarthritis?” World Journal of Orthodontics, vol. 5, no. 3, pp. 319–327, 2014. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Y. Choe, J. Bae, H. Y. Jung, S. H. Park, H. J. Lee, and S. K. Kim, “Serum resistin level is associated with radiographic changes in hand osteoarthritis: cross-sectional study,” Joint, Bone, Spine, vol. 79, no. 2, pp. 160–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Calvet, C. Orellana, J. Gratacós et al., “Synovial fluid adipokines are associated with clinical severity in knee osteoarthritis: a cross-sectional study in female patients with joint effusion,” Arthritis Research & Therapy, vol. 18, no. 1, p. 207, 2016. View at Publisher · View at Google Scholar
  175. Y. Z. Song, J. Guan, H. J. Wang et al., “Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: cartilage damage, clinical, and radiological links,” Journal of Clinical Laboratory Analysis, vol. 30, no. 5, pp. 437–443, 2016. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Gosset, F. Berenbaum, C. Salvat et al., “Crucial role of Visfatin/pre–B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis,” Arthritis and Rheumatism, vol. 58, no. 5, pp. 1399–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. R. R. Yammani and R. F. Loeser, “Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes,” Arthritis Research & Therapy, vol. 14, no. 1, p. R23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Yang, J.-H. Ryu, H. Oh et al., “NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis,” Annals of the Rheumatic Diseases, vol. 74, no. 3, pp. 595–602, 2015. View at Publisher · View at Google Scholar · View at Scopus
  179. H. Oh, J.-S. Kwak, S. Yang et al., “Reciprocal regulation by hypoxia-inducible factor 2a and the NAMPT-NAD+-SIRT axis in articular chondrocytes is involved in osteoarthritis,” Osteoarthritis and Cartilage, vol. 23, no. 12, pp. 2288–2296, 2015. View at Publisher · View at Google Scholar · View at Scopus
  180. Z. Yang, C. Y. Huang, K. A. Candiotti et al., “Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte-like phenotype in vitro,” Journal of Orthopaedic Research, vol. 29, no. 8, pp. 1291–1297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  181. E. H. Hong, H. S. Yun, J. Kim et al., “Nicotinamide phosphoribosyltransferase is essential for interleukin-1beta-mediated dedifferentiation of articular chondrocytes via SIRT 1 and extracellular signal-regulated kinase (ERK) complex signaling,” The Journal of Biological Chemistry, vol. 286, no. 32, pp. 28619–28631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  182. W.-P. Chen, J. P. Bao, J. Feng, P. F. Hu, Z. L. Shi, and L. D. Wu, “Increased serum concentrations of visfatin and its production by different joint tissues in patients with osteoarthritis,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 8, pp. 1141–1145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. M. C. Laiguillon, X. Houard, C. Bougault et al., “Expression and function of visfatin (Nampt), an adipokine-enzyme involved in inflammatory pathways of osteoarthritis,” Arthritis Research & Therapy, vol. 16, no. 1, p. R38, 2014. View at Publisher · View at Google Scholar · View at Scopus
  184. I. R. Klein-Wieringa, M. Kloppenburg, Y. M. Bastiaansen-Jenniskens et al., “The infrapatellar fat pat of patients with osteoarthritis has an inflammatory phenotype,” Annals of the Rheumatic Diseases, vol. 70, no. 5, pp. 851–857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  185. Y. Duan, D. Hao, M. Li et al., “Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis,” Rheumatology International, vol. 32, no. 4, pp. 985–990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  186. E. Pecchi, S. Priam, M. Gosset et al., “Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain,” Arthritis Research & Therapy, vol. 16, no. 1, p. R16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  187. V. Berg, B. Sveinbjörnsson, S. Bendiksen, J. Brox, K. Meknas, and Y. Figenschau, “Human articular chondrocytes express ChemR23 and chemerin; ChemR23 promotes inflammatory signaling upon binding the ligand chemerin (21-157),” Arthritis Research & Therapy, vol. 12, no. 6, article R228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. J. Conde, R. Gómez, G. Bianco et al., “Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes,” Annals of the Rheumatic Diseases, vol. 70, no. 3, pp. 551–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. F. Iannone and G. Lapadula, “Chemerin/ChemR23 pathway: a system beyond chemokines,” Arthritis Research & Therapy, vol. 13, no. 2, p. 104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. K. Huang, G. Du, L. Li, H. Liang, and B. Zhang, “Association of chemerin levels in synovial fluid with the severity of knee osteoarthritis,” Biomarkers, vol. 17, no. 1, pp. 16–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  191. E. Valmonica, C. B. Chighizola, D. Comi et al., “Levels of chemerin and interleukin 8 in the synovial fluid of patients with inflammatory arthritides and osteoarthritis,” Clinical and Experimental Rheumatology, vol. 32, no. 2, pp. 243–250, 2014. View at Google Scholar
  192. J. Ma, D.-S. Niu, N.-J. Wan, Y. Qin, and C.-J. Guo, “Elevated chemerin levels in synovial fluid and synovial membrane from patients with knee osteoarthritis,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 10, pp. 13393–13398, 2015. View at Google Scholar
  193. S. S. Wu, Q. H. Liang, Y. Liu, R. R. Cui, L. Q. Yuan, and E. Y. Liao, “Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway,” International Journal of Endocrinology, vol. 2013, Article ID 368970, p. 6, 2013. View at Publisher · View at Google Scholar · View at Scopus
  194. L. Xu, G. B. Zhu, L. Wang, D. F. Wang, and X. R. Jiang, “Synovial fluid omentin-1 levels are inversely correlated with radiographic severity of knee osteoarthritis,” Journal of Investigative Medicine, vol. 60, no. 3, pp. 583–586, 2012. View at Publisher · View at Google Scholar
  195. Z. G. Li, D. W. Zhao, C. J. Xia et al., “Decreased synovial fluid omentin-1 concentrations reflect symptomatic severity in patients with knee osteoarthritis,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 72, no. 8, pp. 623–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  196. K. Gupta, M. Shukla, J. B. Cowland, C. Malemud, and T. Haqqui, “Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9,” Arthritis and Rheumatism, vol. 56, no. 10, pp. 3326–3335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. H. C. Owen, S. J. Roberts, S. F. Ahmed, and C. Farguharson, “Dexamethasone-induced expression of the glucocorticoid response gene lipocalin 2 in chondrocytes,” American Journal of Physiology. Endocrinology and Metabolism, vol. 294, no. 6, pp. E1023–E1034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. A. Villalvilla, A. García Martín, R. Largo et al., “The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction,” Scientific Reports, vol. 6, p. 29243, 2016. View at Publisher · View at Google Scholar · View at Scopus
  199. W. S. Choi and J. S. Chun, “Upregulation of lipocalin-1 (LCN2) in osteoarthritic cartilage is not necessary for cartilage destruction in mice,” Osteoarthritis and Cartilage, vol. S1063-4584, no. 6, pp. 30195–30199, 2016. View at Google Scholar
  200. M. Katano, K. Okamoto, M. Arito et al., “Implication of granulocyte-macrophage colony-stimulating factor induced neutrophil gelatinase-associated lipocalin in pathogenesis of rheumatoid arthritis revealed by proteome analysis,” Arthritis Research & Therapy, vol. 11, no. 1, article R3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  201. Y. Liu, F. Xu, H. X. Pei et al., “Vaspin regulates the osteogenic differentiation of MC3T3-E1 through the PI3K-Akt/miR-34c loop,” Scientific Reports, vol. 6, p. 25578, 2016. View at Publisher · View at Google Scholar · View at Scopus
  202. M. Scotece, J. Conde, R. Gómez et al., “Beyond fat mass: exploring the role of adipokines in rheumatic diseases,” Scientific World Journal, vol. 11, pp. 1932–1947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. L. Jiang, J. Bao, X. Zhou, Y. Xiong, and L. Wu, “Increased serum levels and chondrocyte expression of nesfatin-1 in patients with osteoarthritis and its relation with BMI, hsCRP, and IL-18,” Mediators of Inflammation, vol. 2013, Article ID 631251, p. 9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  204. Y. Zhang, X. Shui, X. Lian, and G. Wang, “Serum and synovial fluid nesfatin-1 concentration is associated with radiographic severity of knee osteoarthritis,” Medical Science Monitor, vol. 21, pp. 1078–1082, 2015. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Gertler, “Development of leptin antagonists and their potential use in experimental biology and medicine,” Trends in Endocrinology and Metabolism, vol. 17, no. 9, pp. 372–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  206. A. Gertler and G. Solomon, “Leptin-activity blockers: development and potential use in experimental biology and medicine,” Canadian Journal of Physiology and Pharmacology, vol. 91, no. 11, pp. 873–882, 2013. View at Publisher · View at Google Scholar · View at Scopus
  207. G. Matarese and V. De Rosa, “Ob-stopping obesity, metabolic and immune-mediated disorders,” Structure, vol. 20, no. 3, pp. 385–387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  208. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  209. M. L. Bonet, P. Oliver, and A. Palou, “Pharmacological and nutritional agents promoting browning of white adipose tissue,” Biochimica et Biophysica Acta, vol. 1831, no. 5, pp. 969–985, 2013. View at Google Scholar
  210. M. Harms and P. Seale, “Brown and beige fat: development, function and therapeutic potential,” Nature Medicine, vol. 19, no. 10, pp. 1252–1263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  211. K. Voulteenaho, A. Koskinen, and E. Moilanen, “Leptin- a link between obesity and osteoarthritis. Applications for prevention and treatment,” Basic & Clinical Pharmacology & Toxicology, vol. 114, no. 1, pp. 103–108, 2014. View at Publisher · View at Google Scholar · View at Scopus
  212. J. L. Huebener, L. R. Landerman, T. J. Somers et al., “Exploratory secondary analyses of a cognitive-behavioral intervention for knee osteoarthritis demonstrate reduction in biomarkers of adipocyte inflammation,” Osteoarthritis and Cartilage, vol. 24, no. 9, pp. 1528–1534, 2016. View at Publisher · View at Google Scholar · View at Scopus
  213. T. Mukherjee, F. Bomfim, E. Wilder et al., “The impact of obesity on knee osteoarthritis symptoms and related biomarker profiles in a bariatric surgery cohort,” Arthritis & Rhematology, vol. 68, supplement 10, 2016, March 2017, http://acrabstracts.org/abstract/the-impact-of-obesity-on-knee-osteoarthritis-symptoms-and-related-biomarker-profiles-in-a-bariatric-surgery-cohort/ View at Google Scholar
  214. G. Torres-Villalobos, N. Hamdan-Pérez, A. Díaz-Villaseñor et al., “Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats,” Physiological Reports, vol. 4, no. 17, article e12909, 2016. View at Publisher · View at Google Scholar
  215. N. Presle, P. Pottie, H. Dumond et al., “Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production,” Osteoarthritis and Cartilage, vol. 14, no. 7, pp. 690–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. K. S. Santangelo, L. B. Radakovich, J. Fouts, and M. T. Foster, “Pathophysiology of obesity on knee joint homeostasis: contribution of the infrapatellar fat pad,” Hormone Molecular Biology and Clinical Investigation, vol. 26, no. 2, pp. 97–108, 2016. View at Publisher · View at Google Scholar