Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017, Article ID 9605894, 13 pages
https://doi.org/10.1155/2017/9605894
Review Article

Toll-Like Receptor 4 Signalling and Its Impact on Platelet Function, Thrombosis, and Haemostasis

School of Pharmacy, University of Reading, Reading RG6 6UB, UK

Correspondence should be addressed to Darius Widera; ku.ca.gnidaer@arediw.d and Sakthivel Vaiyapuri; ku.ca.gnidaer@irupayiav.s

Received 24 May 2017; Revised 17 August 2017; Accepted 12 September 2017; Published 17 October 2017

Academic Editor: Elzbieta Kolaczkowska

Copyright © 2017 Thomas M. Vallance et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Von Hundelshausen and C. Weber, “Platelets as immune cells: bridging inflammation and cardiovascular disease,” Circulation Research, vol. 100, no. 1, pp. 27–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Berthet, P. Damien, H. Hamzeh-Cognasse, B. Pozzetto, O. Garraud, and F. Cognasse, “Toll-like receptor 4 signal transduction in platelets: novel pathways,” British Journal of Haematology, vol. 151, no. 1, pp. 89–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Alhasan, O. G. Izuogu, H. H. Al-Balool et al., “Circular RNA enrichment in platelets is a signature of transcriptome degradation,” Blood, vol. 127, no. 9, pp. e1–e11, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Jurk and B. E. Kehrel, “Platelets: physiology and biochemistry,” Seminars in Thrombosis and Haemostasis, vol. 31, no. 4, pp. 381–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Offermanns, “Activation of platelet function through G protein-coupled receptors,” Circulation Research, vol. 99, no. 12, pp. 1293–1304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Deppermann and P. Kubes, “Platelets and infection,” Seminars in Immunology, vol. 28, no. 6, pp. 536–545, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Mackman, “Triggers, targets and treatments for thrombosis,” Nature, vol. 451, no. 7181, pp. 914–918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Gurses, D. Kocyigit, M. U. Yalcin et al., “Enhanced platelet Toll-like receptor 2 and 4 expression in acute coronary syndrome and stable angina pectoris,” The American Journal of Cardiology, vol. 116, no. 11, pp. 1666–1671, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Prakash, P. P. Kulkarni, S. R. Lentz, and A. K. Chauhan, “Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-like receptor 4,” Blood, vol. 125, no. 20, pp. 3164–3172, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Beaulieu and J. E. Freedman, “The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes,” Thrombosis Research, vol. 125, no. 3, pp. 205–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Cognasse, K. A. Nguyen, P. Damien et al., “The inflammatory role of platelets via their TLRs and Siglec receptors,” Frontiers in Immunology, vol. 6, no. 83, pp. 1–15, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Arman, K. Krauel, D. O. Tilley et al., “Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4,” Blood, vol. 123, no. 20, pp. 3166–3174, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Ståhl, M. Svensson, M. Mörgelin et al., “Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome,” Blood, vol. 108, no. 1, pp. 167–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Youssefian, A. Drouin, J. M. Massé, J. Guichard, and E. M. Cramer, “Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation,” Blood, vol. 99, no. 11, pp. 4021–4029, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. W. Semple, R. Aslam, M. Kim, E. R. Speck, and J. Freedman, “Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets,” Blood, vol. 109, no. 11, pp. 4803–4805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. C. Macaulay, P. Carr, A. Gusnanto, W. H. Ouwehand, D. Fitzgerald, and N. A. Watkins, “Platelet genomics and proteomics in human health and disease,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3370–3377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Stark, N. Aghakasiri, and R. E. Rumbaut, “Platelet-derived Toll-like receptor 4 (TLR-4) is sufficient to promote microvascular thrombosis in endotoxemia,” PLoS One, vol. 7, no. 7, article e41254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. R. P. Davis, S. Miller-Dorey, and C. N. Jenne, “Platelets and coagulation in infection,” Clinical & Translational Immunology, vol. 5, no. 7, article e89, 2016. View at Publisher · View at Google Scholar
  20. M. Levi and T. van der Poll, “Coagulation and sepsis,” Thrombosis Research, vol. 149, pp. 38–44, 2017. View at Publisher · View at Google Scholar
  21. J. L. Chin, S. H. Hisamuddin, A. O’Sullivan, G. Chan, and P. A. McCormick, “Thrombocytopenia, platelet transfusion, and outcome following liver transplantation,” Clinical and Applied Thrombosis/Hemostasis, vol. 22, no. 4, pp. 351–360, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. S. R. Clark, A. C. Ma, S. A. Tavener et al., “Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood,” Nature Medicine, vol. 13, no. 4, pp. 463–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zeuner, K. Bieback, and D. Widera, “Controversial role of Toll-like receptor 4 in adult stem cells,” Stem Cell Reviews and Reports, vol. 11, no. 4, pp. 621–634, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. A. F. McGettrick and L. A. O’Neill, “Localisation and trafficking of Toll-like receptors: an important mode of regulation,” Current Opinion in Immunology, vol. 22, no. 1, pp. 20–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. A. Karim, H. P. Vemana, and F. T. Khasawneh, “MALT1-ubiquitination triggers non-genomic NF-κB/IKK signaling upon platelet activation,” PLoS One, vol. 10, no. 3, article e0119363, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Rivadeneyra, A. Carestia, J. Etulain et al., “Regulation of platelet responses triggered by Toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB,” Thrombosis Research, vol. 133, no. 2, pp. 235–243, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. U. Ohto, K. Fukase, K. Miyake, and T. Shimizu, “Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2,” Proceedings of the National Academy of Sciences, vol. 109, no. 19, pp. 7421–7426, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Gegner, R. J. Ulevitch, and P. S. Tobias, “Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14,” Journal of Biological Chemistry, vol. 270, no. 10, pp. 5320–5325, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Steimle, I. B. Autenrieth, and J. S. Frick, “Structure and function: lipid A modifications in commensals and pathogens,” International Journal of Medical Microbiology, vol. 306, no. 5, pp. 290–301, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Cognasse, H. Hamzeh-Cognasse, S. Lafarge et al., “Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets,” British Journal of Haematology, vol. 141, no. 1, pp. 84–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Billod, A. Lacetera, J. Guzmán-Caldentey, and S. Martín-Santamaría, “Computational approaches to Toll-like receptor 4 modulation,” Molecules, vol. 21, no. 8, p. 994, 2016. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Vogel, R. Bodenstein, Q. Chen et al., “Platelet-derived HMGB1 is a critical mediator of thrombosis,” Journal of Clinical Investigation, vol. 125, no. 12, pp. 4638–4654, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Yin, T. M. Fu, J. Li, and H. Wu, “Structural biology of innate immunity,” Annual Review of Immunology, vol. 33, pp. 393–416, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. G. A. Esparza, A. Teghanemt, D. Zhang, T. L. Gioannini, and J. P. Weiss, “Endotoxin.albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4,” Innate Immunity, vol. 18, no. 3, pp. 478–491, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. T. L. Gioannini, D. Zhang, A. Teghanemt, and J. P. Weiss, “An essential role for albumin in the interaction of endotoxin with lipopolysaccharide-binding protein and sCD14 and resultant cell activation,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47818–47825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Andonegui, S. Kerfoot, K. McNagny, K. Ebbert, K. Patel, and P. Kubes, “Platelets express functional Toll-like receptor-4 (TLR4),” Blood, vol. 106, no. 7, pp. 2417–2423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. B. S. Park, D. H. Song, H. M. Kim, B. S. Choi, H. Lee, and J. O. Lee, “The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex,” Nature, vol. 458, no. 7242, pp. 1191–1195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Nagai, S. Akashi, M. Nagafuku et al., “Essential role of MD-2 in LPS responsiveness and TLR4 distribution,” Nature Immunology, vol. 3, no. 7, pp. 667–672, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Shimazu, S. Akashi, H. Ogata et al., “MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4,” The Journal of Experimental Medicine, vol. 189, no. 11, pp. 1777–1782, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Pascual-Lucas, S. Fernandez-Lizarbe, J. Montesinos, and C. Guerri, “LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes,” Journal of Neurochemistry, vol. 129, no. 3, pp. 448–462, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Cognasse, H. Hamzeh, P. Chavarin, S. Acquart, C. Genin, and O. Garraud, “Evidence of Toll-like receptor molecules on human platelets,” Immunology and Cell Biology, vol. 83, no. 2, pp. 196–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Aslam, E. R. Speck, M. Kim et al., “Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo,” Blood, vol. 107, no. 2, pp. 637–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. C. Kagan, T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov, “TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β,” Nature Immunology, vol. 9, no. 4, pp. 361–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. M. Moresco, D. LaVine, and B. Beutler, “Toll-like receptors,” Current Biology, vol. 21, no. 13, pp. R488–R493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Randow and B. Seed, “Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability,” Nature Cell Biology, vol. 3, no. 10, pp. 891–896, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Kagan and R. Medzhitov, “Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling,” Cell, vol. 125, pp. 943–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. C. Lin, Y. C. Lo, and H. Wu, “Helical assembly in the MyD88:IRAK4:IRAK2 complex in TLR/IL-1R signalling,” Nature, vol. 465, no. 7300, pp. 885–890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Hacker, P. H. Tseng, and M. Karin, “Expanding TRAF function: TRAF3 as a tri-faced immune regulator,” Nature Reviews Immunology, vol. 11, no. 7, pp. 457–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Płóciennikowska, A. Hromada-Judycka, K. Borzęcka, and K. Kwiatkowska, “Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling,” Cellular and Molecular Life Sciences, vol. 72, no. 3, pp. 557–581, 2015. View at Publisher · View at Google Scholar · View at Scopus
  50. M. T. Zeuner, C. L. Kruger, K. Volk et al., “Biased signalling is an essential feature of TLR4 in glioma cells,” Biochimica et Biophysica Acta, vol. 1863, no. 12, pp. 3084–3095, 2016. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Kawai and S. Akira, “Signaling to NF-κB by Toll-like receptors,” Trends in Molecular Medicine, vol. 13, no. 11, pp. 460–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Husebye, Ø. Halaas, H. Stenmark et al., “Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity,” The EMBO Journal, vol. 25, no. 4, pp. 683–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Tanimura, S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake, “Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling,” Biochemical and Biophysical Research Communications, vol. 368, no. 1, pp. 94–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Latz, A. Visintin, E. Lien et al., “Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the Toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47834–47843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Zanoni, R. Ostuni, L. R. Marek et al., “CD14 controls the LPS-induced endocytosis of Toll-like receptor 4,” Cell, vol. 147, no. 4, pp. 868–880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Jiang, P. Georgel, X. Du et al., “CD14 is required for MyD88-independent LPS signaling,” Nature Immunology, vol. 6, no. 6, pp. 565–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Sun, “Platelet TLR4: A critical link in pulmonary arterial hypertension,” Circulation Research, vol. 114, no. 10, pp. 1551–1553, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. J. D. McFadyen and Z. S. Kaplan, “Platelets are not just for clots,” Transfusion Medicine Reviews, vol. 29, no. 2, pp. 110–119, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Gibbins, “Platelet adhesion signalling and the regulation of thrombus formation,” Journal of Cell Science, vol. 117, no. 16, pp. 3415–3425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Nieswandt, D. Varga-Szabo, and M. Elvers, “Integrins in platelet activation,” Journal of Thrombosis and Haemostasis, vol. 7, Supplement 1, pp. 206–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Zhang, J. Han, E. J. Welch et al., “LPS stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway,” The Journal of Immunology, vol. 182, no. 12, pp. 7997–8004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Hashimoto, M. Jayachandran, W. G. Owen, and V. M. Miller, “Aggregation and microparticle production through Toll-like receptor 4 activation in platelets from recently menopausal women,” Journal of Cardiovascular Pharmacology, vol. 54, no. 1, pp. 57–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. P. N. Shashkin, G. T. Brown, A. Ghosh, G. K. Marathe, and T. M. McIntyre, “Lipopolysaccharide is a direct agonist for platelet RNA splicing,” The Journal of Immunology, vol. 181, no. 5, pp. 3495–3502, 2008. View at Publisher · View at Google Scholar
  64. F. Liu, S. A. Morris, J. L. Epps, and R. C. Carroll, “Demonstration of an activation regulated NF-kappaB/I-kappaBalpha complex in human platelets,” Thrombosis Research, vol. 106, no. 4–-5, pp. 199–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. G. T. Brown and T. M. McIntyre, “Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles,” The Journal of Immunology, vol. 186, no. 9, pp. 5489–5496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Berthet, P. Damien, H. Hamzeh-Cognasse et al., “Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion,” Clinical Immunology, vol. 145, no. 3, pp. 189–200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Damien, F. Cognasse, M.-A. Eyraud et al., “LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-ligand,” BMC Immunology, vol. 16, p. 3, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Cognasse, S. Lafarge, P. Chavarin, S. Acquart, and O. Garraud, “Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9,” Intensive Care Medicine, vol. 33, no. 2, pp. 382–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Assinger, M. Laky, S. Badrnya, A. Esfandeyari, and I. Volf, “Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4,” Thrombosis Research, vol. 130, no. 3, pp. e73–e78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. P. André, L. Nannizzi-Alaimo, S. K. Prasad, and D. R. Phillips, “Platelet-derived CD40L: the switch-hitting player of cardiovascular disease,” Circulation, vol. 106, no. 8, pp. 896–899, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. S. F. de Stoppelaar, T. A. Claushuis, M. P. Jansen et al., “The role of platelet MyD88 in host response during gram-negative sepsis,” Journal of Thrombosis and Haemostasis, vol. 13, no. 9, pp. 1709–1720, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. M. M. Denis, N. D. Tolley, M. Bunting et al., “Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets,” Cell, vol. 122, pp. 379–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. A. Karim, J. Zhang, M. Banerjee et al., “IκB kinase phosphorylation of SNAP-23 controls platelet secretion,” Blood, vol. 121, no. 22, pp. 4567–4574, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Malaver, M. A. Romaniuk, L. P. D’atri et al., “NF-κB inhibitors impair platelet activation responses,” Journal of Thrombosis and Haemostasis, vol. 7, no. 8, pp. 1333–1343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. Li, X. Xi, M. Gu et al., “A stimulatory role for cGMP-dependent protein kinase in platelet activation,” Cell, vol. 112, no. 1, pp. 77–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Li, G. Zhang, J. A. Marjanovic, C. Ruan, and X. Du, “A platelet secretion pathway mediated by cGMP-dependent protein kinase,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42469–42475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. R. Ward, L. Bingle, H. M. Judge et al., “Agonists of Toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor,” Thrombosis and Haemostasis, vol. 94, no. 4, pp. 831–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. S. F. de Stoppelaar, T. A. M. Claushuis, M. C. Schaap et al., “Toll-like receptor signalling is not involved in platelet response to Streptococcus pneumoniae in vitro or in vivo,” PLoS One, vol. 11, no. 6, article e0156977, 2016. View at Publisher · View at Google Scholar · View at Scopus
  79. S. W. Kerrigan and D. Cox, “Platelet-bacterial interactions,” Cellular and Molecular Life Sciences, vol. 67, no. 4, pp. 513–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. S. L. Spinelli, A. E. Casey, S. J. Pollock et al., “Platelets and megakaryocytes contain functional nuclear factor-κB,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 3, pp. 591–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. F. Semeraro, C. T. Ammollo, J. H. Morrissey et al., “Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4,” Blood, vol. 118, no. 7, pp. 1952–1961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Zeuner, T. Vallance, S. Vaiyapuri, G. S. Cottrell, and D. Widera, “Development and characterisation of a novel NF-κB reporter cell line for investigation of neuroinflammation,” Mediators of Inflammation, vol. 2017, Article ID 6209865, 2017. View at Publisher · View at Google Scholar
  83. I. Mitroulis, K. Kambas, A. Chrysanthopoulou et al., “Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout,” PLoS One, vol. 6, no. 12, article e29318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. L. X. Yu, L. Yan, W. Yang et al., “Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein,” Nature Communications, vol. 5, p. 5256, 2014. View at Publisher · View at Google Scholar · View at Scopus
  85. L. J. Gay and B. Felding-Habermann, “Contribution of platelets to tumour metastasis,” Nature Reviews Cancer, vol. 11, no. 2, pp. 123–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Hreggvidsdottir, T. Ostberg, H. Wähämaa et al., “The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 655–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. H. Youn, Y. J. Oh, E. S. Kim, J. E. Choi, and J. Shin, “High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes,” The Journal of Immunology, vol. 180, no. 7, pp. 5067–5074, 2008. View at Publisher · View at Google Scholar
  88. G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst, and A. J. Coyle, “HMGB1 and RAGE in inflammation and cancer,” Annual Review of Immunology, vol. 28, pp. 367–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Westman, P. Papareddy, M. W. Dahlgren et al., “Extracellular histones induce chemokine production in whole blood ex vivo and leukocyte recruitment in vivo,” PLoS Pathogens, vol. 11, no. 12, article e1005319, 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Xu, X. Zhang, M. Monestier, N. L. Esmon, and C. T. Esmon, “Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury,” The Journal of Immunology, vol. 187, no. 5, pp. 2626–2631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Xu, X. Zhang, R. Pelayo et al., “Extracellular histones are major mediators of death in sepsis,” Nature Medicine, vol. 15, no. 11, pp. 1318–1321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. C. T. Esmon, “Extracellular histones zap platelets,” Blood, vol. 118, no. 13, pp. 3456-3457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. T. A. Fuchs, A. A. Bhandari, and D. D. Wagner, “Histones induce rapid and profound thrombocytopenia in mice,” Blood, vol. 118, no. 13, pp. 3708–3714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Zhao, C. Zhang, X. Wei et al., “Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation,” Scientific Reports, vol. 5, no. 1, article 15352, 2015. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Hochleitner, E. Hochleitner, P. Obrist et al., “Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, pp. 617–623, 2000. View at Publisher · View at Google Scholar
  96. R. Ebert, P. Benisch, M. Krug et al., “Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via Toll-like receptor 4 in mesenchymal stem cells,” Stem Cell Research, vol. 15, no. 1, pp. 231–239, 2015. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Urieli-Shoval, G. Shubinsky, R. P. Linke, M. Fridkin, I. Tabi, and Y. Matzner, “Adhesion of human platelets to serum amyloid A,” Blood, vol. 99, no. 4, pp. 1224–1229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. E. M. Bauer, R. S. Chanthaphavong, C. P. Sodhi, D. J. Hackam, T. R. Billiar, and P. M. Bauer, “Genetic deletion of Toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension,” Circulation Research, vol. 114, no. 10, pp. 1596–1600, 2014. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Ding, G. Chen, R. Hoffman et al., “TLR4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation,” Circulation: Cardiovascular Genetics, vol. 7, no. 5, pp. 615–624, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Patrignani, C. Di Febbo, S. Tacconelli et al., “Reduced thromboxane biosynthesis in carriers of Toll-like receptor 4 polymorphisms in vivo,” Blood, vol. 107, no. 9, pp. 3572–3574, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. J. C. Tsai, Y. W. Lin, C. Y. Huang, F. Y. Lin, and C. S. Tsai, “Calpain activity and Toll-like receptor 4 expression in platelet regulate haemostatic situation in patients undergoing cardiac surgery and coagulation in mice,” Mediators of Inflammation, vol. 2014, Article ID 484510, 12 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus