Table of Contents Author Guidelines Submit a Manuscript
Minimally Invasive Surgery
Volume 2013, Article ID 179569, 10 pages
http://dx.doi.org/10.1155/2013/179569
Review Article

Minimally Invasive Mitral Valve Surgery: A Systematic Review

1Cardiothoracic and Cardiology Department, Maastricht University, The Netherlands
2Heart and Vessels Department, Careggi Hospital, Florence, Italy
3Cardiology Department, Paolo Borsellino Hospital, Marsala, Italy

Received 8 June 2012; Revised 7 February 2013; Accepted 17 February 2013

Academic Editor: Gideon Uretzky

Copyright © 2013 Fabiana Lucà et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Gilliov, M. K. Banbury, and D. M. Cosgrove, “Hemisternotomy approach for aortic and mitral valve surgery,” Journal of Cardiac Surgery, vol. 15, no. 1, pp. 15–20, 2000. View at Google Scholar · View at Scopus
  2. P. Modi, A. Hassan, and W. R. Chitwood Jr., “Minimally invasive mitral valve surgery: a systematic review and meta-analysis,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 5, pp. 943–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Seeburger, M. A. Borger, V. Falk et al., “Minimal invasive mitral valve repair for mitral regurgitation: results of 1339 consecutive patients,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 4, pp. 760–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Schmitto, S. A. Mokashi, and L. H. Cohn, “Minimally-invasive valve surgery,” Journal of the American College of Cardiology, vol. 56, no. 6, pp. 455–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. McClure, L. H. Cohn, E. Wiegerinck et al., “Early and late outcomes in minimally invasive mitral valve repair: an eleven-year experience in 707 patients,” The Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 1, pp. 70–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Gammie, S. T. Bartlett, and B. P. Griffith, “Small-incision mitral valve repair: safe, durable, and approaching perfection,” Annals of Surgery, vol. 250, no. 3, pp. 409–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Iribarne, A. Karpenko, M. J. Russo et al., “Eight-year experience with minimally invasive cardiothoracic surgery,” World Journal of Surgery, vol. 34, no. 4, pp. 611–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. H. Cohn, D. H. Adams, G. S. Couper et al., “Minimally invasive cardiac valve surgery improves patient satisfaction while reducing costs of cardiac valve replacement and repair,” Annals of Surgery, vol. 226, no. 4, pp. 421–428, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Navia and D. M. Cosgrove, “Minimally invasive mitral valve operations,” Annals of Thoracic Surgery, vol. 62, no. 5, pp. 1542–1544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. W. R. Chitwood Jr., C. L. Wixon, J. R. Elbeery, J. F. Moran, and W. H. Chapman, “Video-assisted minimally invasive mitral valve surgery,” The Journal of Thoracic and Cardiovascular Surgery, vol. 114, no. 5, pp. 773–782, 1997. View at Google Scholar
  11. V. Falk, T. Walther, R. Autschbach, A. Diegeler, R. Battellini, and F. W. Mohr, “Robot-assisted minimally invasive solo mitral valve operation,” The Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 2, pp. 470–471, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Weinzweig and R. Yetman, “Transposition of the greater omentum for recalcitrant median sternotomy wound infections,” Annals of Plastic Surgery, vol. 34, no. 5, pp. 471–477, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Zacharias and R. H. Habib, “Factors predisposing to median sternotomy complications: deep versus superficial infection,” Chest, vol. 110, no. 5, pp. 1173–1178, 1996. View at Google Scholar · View at Scopus
  14. R. Moore, D. M. Follette, and H. A. Berkoff, “Poststernotomy fractures and pain management in open cardiac surgery,” Chest, vol. 106, no. 5, pp. 1339–1342, 1994. View at Google Scholar · View at Scopus
  15. C. D. Casscells, R. W. Lindsey, J. Ebersole, and B. Li, “Ulnar neuropathy after median sternotomy,” Clinical Orthopaedics and Related Research, no. 291, pp. 259–265, 1993. View at Google Scholar · View at Scopus
  16. A. J. Bryan, M. Lamarra, G. D. Angelini, R. R. West, and I. M. Breckenridge, “Median sternotomy wound dehiscence: a retrospective case control study of risk factors and outcome,” Journal of the Royal College of Surgeons of Edinburgh, vol. 37, no. 5, pp. 305–308, 1992. View at Google Scholar · View at Scopus
  17. A. P. Furnary, J. A. Magovern, K. A. Simpson, and G. J. Magovern, “Prolonged open sternotomy and delayed sternal closure after cardiac operations,” Annals of Thoracic Surgery, vol. 54, no. 2, pp. 233–239, 1992. View at Google Scholar · View at Scopus
  18. M. R. Hanson, A. C. Breuer, A. Furlan et al., “Mechanism and frequency of brachial plexus injury in open-heart surgery: a prospective analysis,” Annals of Thoracic Surgery, vol. 36, no. 6, pp. 675–679, 1983. View at Google Scholar · View at Scopus
  19. R. N. Merchant, W. F. Brown, and B. V. Watson, “Peripheral nerve injuries in cardiac anaesthesia,” Canadian Journal of Anaesthesia, vol. 37, no. 4, part 2, p. S152, 1990. View at Google Scholar · View at Scopus
  20. J. P. Greelish, L. H. Cohn, M. Leacche et al., “Minimally invasive mitral valve repair suggests earlier operations for mitral valve disease,” The Journal of Thoracic and Cardiovascular Surgery, vol. 126, no. 2, pp. 365–373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Schwartz, G. H. Ribakove, E. A. Grossi et al., “Minimally invasive mitral valve replacement: port-access technique, feasibility, and myocardial functional preservation,” The Journal of Thoracic and Cardiovascular Surgery, vol. 113, no. 6, pp. 1022–1031, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. E. C. Cutler and S. A. Levine, “Cardiotomy and valvulotomy for mitral stenosis,” The Boston Medical and Surgical Journal, vol. 188, pp. 1023–1027, 1923. View at Publisher · View at Google Scholar
  23. C. Dubost, D. Guilmet, B. Parades et al., “Nouvelle technique d'ouverture de l'oreillette gauche en chirurgie a coeur ouvert: l'abord bi-auriculair transseptal,” La Presse Médicale, vol. 74, pp. 1607–1608, 1966. View at Google Scholar
  24. G. M. Guiraudon, J. G. Ofiesh, and R. Kaushik, “Extended vertical transatrial septal approach to the mitral valve,” Annals of Thoracic Surgery, vol. 52, no. 5, pp. 1058–1062, 1991. View at Google Scholar · View at Scopus
  25. L. H. Cohn, “Comparative morbidity of mitral valve repair versus replacement for mitral regurgitation with and without coronary artery disease: updated in 1995,” Annals of Thoracic Surgery, vol. 60, no. 5, pp. 1452–1453, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. L. H. Cohn, D. P. Bichell, D. H. Adams et al., “Repair of mitral regurgitation from myxomatous degeneration in the patient with a severely calcified posterior annulus,” Journal of Cardiac Surgery, vol. 10, pp. 281–284, 1995. View at Publisher · View at Google Scholar
  27. A. Carpentier, D. Loulmet, A. Carpentier et al., “First open heart operation (mitral valvuloplasty) under videosurgery through a minithoracotomy,” Comptes Rendus de l'Academie des Sciences III, vol. 319, no. 3, pp. 219–223, 1996. View at Google Scholar · View at Scopus
  28. F. W. Mohr, J. F. Onnasch, V. Falk et al., “The evolution of minimally invasive mitral valve surgery—2 year experience,” European Journal of Cardio-Thoracic Surgery, vol. 15, no. 3, pp. 233–239, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Kronzon and T. G. Matros, “Intraoperative echocardiography in minimally invasive cardiac surgery and novel cardiovascular surgical techniques,” The American Heart Hospital Journal, vol. 2, no. 4, pp. 198–204, 2004. View at Google Scholar · View at Scopus
  30. J. E. Felger, W. R. Chitwood Jr., L. W. Nifong, and D. Holbert, “Evolution of mitral valve surgery: toward a totally endoscopic approach,” Annals of Thoracic Surgery, vol. 72, no. 4, pp. 1203–1209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. D. D. Glower, K. P. Landolfo, F. Clements et al., “Mitral valve operation via Port Access versus median sternotomy,” European Journal of Cardio-Thoracic Surgery, vol. 14, supplement 1, pp. S143–S147, 1998. View at Google Scholar · View at Scopus
  32. H. Reichenspurner, V. Gulielmos, J. Wunderlich et al., “Port-Access coronary artery bypass grafting with the use of cardiopulmonary bypass and cardioplegic arrest,” Annals of Thoracic Surgery, vol. 65, no. 2, pp. 413–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. C. R. Asher, J. M. DiMengo, K. L. Arheart et al., “Atrial fibrillation early postoperatively following minimally invasive cardiac valvular surgery,” American Journal of Cardiology, vol. 84, no. 6, pp. 744–747, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. E. A. Grossi, A. C. Galloway, G. H. Ribakove et al., “Minimally invasive port access surgery reduces operative morbidity for valve replacement in the elderly,” The Heart Surgery Forum, vol. 2, no. 3, pp. 212–215, 1999. View at Google Scholar · View at Scopus
  35. T. Walther, V. Falk, S. Metz et al., “Pain and quality of life after minimally invasive versus conventional cardiac surgery,” Annals of Thoracic Surgery, vol. 67, no. 6, pp. 1643–1647, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Schneider, J. F. Onnasch, V. Falk, T. Walther, R. Autschbach, and F. W. Mohr, “Cerebral microemboli during minimally invasive and conventional mitral valve operations,” Annals of Thoracic Surgery, vol. 70, no. 3, pp. 1094–1097, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Hamano, T. Kawamura, H. Gohra et al., “Stress caused by minimally invasive cardiac surgery versus conventional cardiac surgery: incidence of systemic inflammatory response syndrome,” World Journal of Surgery, vol. 25, no. 2, pp. 117–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. E. A. Grossi, A. LaPietra, G. H. Ribakove et al., “Minimally invasive versus sternotomy approaches for mitral reconstruction: comparison of intermediate-term results,” The Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 4, pp. 708–713, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. E. A. Grossi, A. C. Galloway, G. H. Ribakove et al., “Impact of minimally invasive valvular heart surgery: a case-control study,” Annals of Thoracic Surgery, vol. 71, no. 3, pp. 807–810, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Yamada, R. Ochiai, J. Takeda, H. Shin, and R. Yozu, “Comparison of early postoperative quality of life in minimally invasive versus conventional valve surgery,” Journal of Anesthesia, vol. 17, no. 3, pp. 171–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. B. J. McCreath, M. Swaminathan, J. V. Booth et al., “Mitral valve surgery and acute renal injury: port access versus median sternotomy,” Annals of Thoracic Surgery, vol. 75, no. 3, pp. 812–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. C. de Vaumas, I. Philip, G. Daccache et al., “Comparison of minithoracotomy and conventional sternotomy approaches for valve surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 17, no. 3, pp. 325–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. V. A. Gaudiani, G. L. Grunkemeier, L. J. Castro, A. L. Fisher, and Y. Wu, “Mitral valve operations through standard and smaller incisions,” The Heart Surgery Forum, vol. 7, no. 4, pp. E337–E342, 2004. View at Google Scholar · View at Scopus
  44. T. Mihaljevic, L. H. Cohn, D. Unic et al., “One thousand minimally invasive valve operations: early and late results,” Annals of Surgery, vol. 240, no. 3, pp. 529–534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Dogan, T. Aybek, P. S. Risteski et al., “Minimally invasive port access versus conventional mitral valve surgery: prospective randomized study,” Annals of Thoracic Surgery, vol. 79, no. 2, pp. 492–498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. W. H. Ryan, T. M. Dewey, M. J. Mack, M. A. Herbert, and S. L. Prince, “Mitral valve surgery using the classical 'heartport' technique,” The Journal of Heart Valve Disease, vol. 14, no. 6, pp. 709–714, 2005. View at Google Scholar · View at Scopus
  47. A. Carpentier, D. Loulmet, B. Aupècle et al., “Computer assisted open heart surgery. First case operated on with success,” Comptes Rendus de l'Académie des Sciences, vol. 321, pp. 437–442, 1998. View at Google Scholar
  48. A. C. Galloway, R. J. Shemin, D. D. Glower et al., “First report of the port access international registry,” The Annals of Thoracic Surgery, vol. 67, pp. 51–58, 1999. View at Publisher · View at Google Scholar
  49. V. Gulielmos, J. Wunderlich, M. Dangel et al., “Minimally invasive mitral valve surgery, clinical experiences with port access system,” European Journal Cardio-Thoracic Surgery, vol. 14, supplement 1, pp. S148–S153, 1998. View at Google Scholar
  50. F. W. Mohr, V. Falk, A. Diegeler et al., “Minimally invasive port-access mitral valve surgery,” The Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 3, pp. 567–576, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. Stevens, T. A. Burdon, W. S. Peters et al., “Port-access coronary artery bypass grafting: a proposed surgical method,” The Journal of Thoracic and Cardiovascular Surgery, vol. 111, pp. 567–573, 1996. View at Publisher · View at Google Scholar
  52. L. C. Siegel, F. G. St Goar, J. H. Stevens et al., “Monitoring considerations for port-access cardiac surgery,” Circulation, vol. 96, no. 2, pp. 562–568, 1997. View at Google Scholar · View at Scopus
  53. F. Clements, S. J. Wright, and N. de Bruijn, “Coronary sinus catheterization made easy for Port-Access minimally invasive cardiac surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 12, no. 1, pp. 96–101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. M. A. Chaney, J. P. Sims, and B. Blakeman, “Port-access minimally invasive cardiac surgery in a patient without arms,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 13, no. 4, pp. 459–461, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. D. C. Angouras and R. E. Michler, “An alternative surgical approach to facilitate minimally invasive mitral valve surgery,” Annals of Thoracic Surgery, vol. 73, no. 2, pp. 673–674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. W. R. Chitwood Jr., J. R. Elbeery, W. H. H. Chapman et al., “Video-assisted minimally invasive mitral valve surgery: the ‘micro- mitral’ operation,” The Journal of Thoracic and Cardiovascular Surgery, vol. 113, no. 2, pp. 413–414, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. W. R. Chitwood, “State of the art review: videoscopic minimally invasive mitral valve surgery. Trekking to a totally endoscopic operation,” The Heart Surgery Forum, vol. 1, no. 1, pp. 13–16, 1998. View at Google Scholar · View at Scopus
  58. A. P. Kypson, L. W. Nifong, and W. R. Chitwood Jr., “Robotic mitral valve surgery,” Surgical Clinics of North America, vol. 83, no. 6, pp. 1387–1403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. P. Kypson, J. E. Felger, L. W. Nifong, and W. R. Chitwood Jr., “Robotics in valvular surgery: 2003 and beyond,” Current Opinion in Cardiology, vol. 19, no. 2, pp. 128–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Tatooles, P. S. Pappas, P. J. Gordon, and M. S. Slaughter, “Minimally invasive mitral valve repair using the da Vinci robotic system,” Annals of Thoracic Surgery, vol. 77, no. 6, pp. 1978–1984, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Walther, C. Walther, V. Falk et al., “Early clinical results after stentless mitral valve implantation and comparison with conventional valve repair or replacement,” Circulation, vol. 100, no. 19, pp. II78–II83, 1999. View at Google Scholar · View at Scopus
  62. T. Walther, S. Lehmann, V. Falk et al., “Midterm results after stentless mitral valve replacement,” Circulation, vol. 108, supplement 1, pp. II85–II89, 2003. View at Google Scholar · View at Scopus
  63. D. Wang, Q. Wang, X. Yang, Q. Wu, and Q. Li, “Mitral valve replacement through a minimal right vertical infra-axillary thoracotomy versus standard median sternotomy,” Annals of Thoracic Surgery, vol. 87, no. 3, pp. 704–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. F. Onnasch, F. Schneider, V. Falk, M. Mierzwa, J. Bucerius, and F. W. Mohr, “Five years of less invasive mitral valve surgery: from experimental to routine approach,” Heart Surgery Forum, vol. 5, no. 2, pp. 132–135, 2002. View at Google Scholar · View at Scopus
  65. J. E. Felger, L. W. Nifong, and W. R. Chitwood Jr., “The evolution of and early experience with robot-assisted mitral valve surgery,” Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, vol. 12, no. 1, pp. 58–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. J. E. Felger, L. W. Nifong, and W. R. Chitwood Jr., “The evolution and early experience with robot-assisted mitral valve surgery,” Current Surgery, vol. 58, no. 6, pp. 570–575, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. W. R. Chitwood Jr., J. R. Elbeery, and J. F. Moran, “Minimally invasive mitral valve repair using transthoracic aortic occlusion,” Annals of Thoracic Surgery, vol. 63, no. 5, pp. 1477–1479, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Puskas, D. Cheng, J. Knight et al., “Off-pump versus conventional coronary artery bypass grafting: a meta-analysis and consensus statement from the 2004 ISMICS Consensus Conference,” Innovations, vol. 1, no. 1, pp. 3–27, 2005. View at Google Scholar
  69. V. Falk, D. C. H. Cheng, J. Martin et al., “Minimally invasive versus open mitral valve surgery: a consensus statement of the international society of minimally invasive coronary surgery (ISMICS) 2010,” Innovations, vol. 6, no. 2, pp. 66–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. S. Gammie, Y. Zhao, E. D. Peterson, S. M. O'Brien, J. S. Rankin, and B. P. Griffith, “Less-invasive mitral valve operations: trends and outcomes from the society of thoracic surgeons adult cardiac surgery database,” Annals of Thoracic Surgery, vol. 90, no. 5, pp. 1401–1408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. E. A. Grossi, A. C. Galloway, A. LaPietra et al., “Minimally invasive mitral valve surgery: a 6-year experience with 714 patients,” Annals of Thoracic Surgery, vol. 74, no. 3, pp. 660–664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. E. A. Grossi, D. F. Loulmet, C. F. Schwartz et al., “Minimally invasive valve surgery with antegrade perfusion strategy is not associated with increased neurologic complications,” The Annals of Thoracic Surgery, vol. 92, no. 4, pp. 1346–1350, 2011. View at Google Scholar
  73. G. A. Crooke, C. F. Schwartz, G. H. Ribakove et al., “Retrograde arterial perfusion, not incision location, significantly increases the risk of stroke in reoperative mitral valve procedures,” Annals of Thoracic Surgery, vol. 89, no. 3, pp. 723–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. A. Grossi, D. F. Loulmet, C. F. Schwartz et al., “Evolution of operative techniques and perfusion strategies for minimally invasive mitral valve repair,” in Proceedings of The American Association for Thoracic Surgery: Mitral Conclave, New York, NY, USA, May 2011, http://www.aats.org/mitral/abstracts/2011/15.html.
  75. D. W. Yaffee, A. C. Galloway, and E. A. Grossi, “Editorial analysis: impact of perfusion strategy on stroke risk for minimally invasive cardiac surgery,” European Journal Cardio-Thoracic Surgery, vol. 41, no. 6, pp. 1223–1224, 2012. View at Publisher · View at Google Scholar
  76. D. A. Murphy, J. S. Miller, D. A. Langford, and A. B. Snyder, “Endoscopic robotic mitral valve surgery,” The Journal of Thoracic and Cardiovascular Surgery, vol. 132, no. 4, pp. 776–781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. G. J. Murphy, B. C. Reeves, C. A. Rogers, S. I. A. Rizvi, L. Culliford, and G. D. Angelini, “Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery,” Circulation, vol. 116, no. 22, pp. 2544–2552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. W. Nifong, W. R. Chitwood, P. S. Pappas et al., “Robotic mitral valve surgery: a United States multicenter trial,” The Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 6, pp. 1395–1404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. A. Vlessis and S. F. Bolling, “Mini-reoperative mitral valve surgery,” Journal of Cardiac Surgery, vol. 13, no. 6, pp. 468–470, 1998. View at Google Scholar · View at Scopus
  80. A. Iribarne, R. Easterwood, M. J. Russo, E. Y. Chan, C. R. Smith, and M. Argenziano, “Comparative effectiveness of minimally invasive versus traditional sternotomy mitral valve surgery in elderly patients,” The Journal of Thoracic and Cardiovascular Surgery, vol. 143, supplement 4, pp. S86–S90, 2012. View at Google Scholar
  81. M. Tabata and L. H. Cohn, “Minimally invasive mitral valve repair with and without robotic technology in the elderly,” The American Journal of Geriatric Cardiology, vol. 15, no. 5, pp. 306–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. L. G. Svensson, F. A. Atik, D. M. Cosgrove et al., “Minimally invasive versus conventional mitral valve surgery: a propensity-matched comparison,” The Journal of Thoracic and Cardiovascular Surgery, vol. 139, pp. 926–932, 2010. View at Publisher · View at Google Scholar