Mobile Information Systems
 Journal metrics
Acceptance rate37%
Submission to final decision102 days
Acceptance to publication42 days
CiteScore3.900
Impact Factor1.508

Active Synchronous Control Strategy of Distributed Power Grid Connection Based on Mobile Network

Read the full article

 Journal profile

Mobile Information Systems publishes original research articles as well as review articles that report the theory and/or application of new ideas and concepts in the field of mobile information systems.

 Editor spotlight

Mobile Information Systems maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

An MSCN-Based Virtual Computing Cell-Oriented BSM Dissemination Mechanism

With the concept of multiaccess edge computing (MEC) being put forward, Roadside Unit (RSU) is considered as a valid application provider, which not only executes transmission resource allocation and data processing-related computing but also provides real-time applications to road vehicles. However, when fixed roadside nodes communicate with mobile vehicles, the high service migration rate could influence real-time feature of corresponding service. Moreover, vehicle density also affects service performance. Hence, in this paper, a two-processing layer architecture is constructed. A new concept, mobile secondary computing node (MSCN), which is used to compose mobile computing layer, is defined, and the number of MSCN changes dynamically with the vehicle density. Then, MSCN oriented virtual computing cell (VirCC), while corresponding to resource allocation approach and vehicle message dissemination mechanism, is designed. A network simulator (NS-3.28) is employed to investigate the performance of the proposed architecture. The simulation results show that the proposed architecture significantly improves both communication performance and computing efficiency.

Research Article

Smart Localization of Thunderstorm Charge for Human 4IR Applications

The relationship between smart devices and human beings is one of the research hotspots of the Fourth Industrial Revolution (4IR). In this regard, we explored the practical relationship between the 3D electric field components measured by the smart 3D atmospheric electric field apparatus (AEFA) and the thunderstorm activity from the perspective of the observer. Especially, in the application of AEFA, a smart calibration method is proposed to solve the problem of inconvenient thunderstorm data acquisition. Firstly, in order to obtain the thunderstorm charge position from the observation angle of the apparatus, this paper establishes a 3D electric field measurement model. According to the mirror method theory, we further obtain the charge potential distribution at AEFA. Then, the electric field components are derived by using the potential distribution formula with permittivity. In addition, based on the vector relation of the model, the thunderstorm charge azimuth and elevation angles are obtained. Finally, after the establishment of a new coordinate system, the calibration of charge localization is carried out, based on the observation point. Meanwhile, a preliminary solution is given to the problem that the elevation of the apparatus position affects the localization performance. Results show that the method matches the data of radar map and microphone array, which reflects the advantages of the method. Besides, this method can be used not only in sound source localization but also in AI thunderstorm monitoring system to realize a big data net observation.

Research Article

Impact of GPS Interference on Time Synchronization of DVB-T Transmitters

Nowadays, the Global Positioning System (GPS) is widely used in all aspects of our lives. GPS signals are not used only in positioning and navigation applications and services in transport and military, but, thanks to quite precise information about time, also for synchronization of world trade and synchronization of wireless transmitters. However, with the recent spread of location-based services, a large number of GPS jammers had appeared. Use of these jammers is prohibited by law; however, their use is gaining popularity especially in the transport segment since jammers can be used to trick vehicle onboard units and help avoid paying toll fees on highways or avoid tracking of company cars when used privately. In this paper, we will investigate the impact of GPS interference caused by jamming and spoofing on the synchronization of Single Frequency Network (SFN) Digital Video Broadcasting–Terrestrial (DVB-T) transmitters. Since GPS signals are used in the DVB-T SFN to provide synchronization which is crucial for the correct network operation, the interference of GPS signals can cause problems with signal distribution. Thus, signals received from a DVB-T SFN network might be out of synchronization and disrupt the service for users.

Research Article

QoS-Based Multicast Routing in Network Function Virtualization-Enabled Software-Defined Mobile Edge Computing Networks

Mobile Edge Computing (MEC) technology brings the unprecedented computing capacity to the edge of mobile network. It provides the cloud and end user swift high-quality services with seamless integration of mobile network and Internet. With powerful capability, virtualized network functions can be allocated to MEC. In this paper, we study QoS guaranteed multicasting routing with Network Function Virtualization (NFV) in MEC. Specifically, data should pass through a service function chain before reaching destinations along a multicast tree with minimal computational cost and meeting QoS requirements. Furthermore, to overcome the problems of traditional IP multicast and software-defined multicasting approaches, we propose an implementable multicast mechanism that delivers data along multicast tree but uses unicast sessions. We finally evaluate the performance of the proposed mechanism based on experimental simulations. The results show that our mechanism outperforms others reported in the literature.

Research Article

Evaluation of Potential Correlation of Piano Teaching Using Edge-Enabled Data and Machine Learning

Data science has expanded at an exponential growth with the advancement of big data technology. The data analysis techniques need to delve deeper to find valuable information (Sarac 2017). The notion of edge computing is broadly acknowledged. Edge-enabled solutions provide computing, analysis, storage, and control nearer to the edge of the network, which support the efficient processing and decision-making. Machine learning has also attained significant attention in this context due to its flexibility and its ability to provide a variety of supervised, unsupervised, and semisupervised techniques. This research presents a specific model to evaluate the potential correlation of piano teaching using machine learning. The data analysis is performed at the edges of network for efficient results (Tan et al. 2017). The association rule mining technique of machine learning is utilized with the integration of improved T-test method. The improved T-test is performed for the measurement of association rules and proposed a new measure and influence degree of association rules. It is evident from the results that the use of the degree of influence as a measure of association rules to find the potential relevance of multimedia-assistant piano teaching evaluation data is extremely feasible. It overcomes shortcomings of existing measurement standards and reduces the generation of redundant rules. The existing literature highlights the concepts of evaluation of potential correlation and evaluates the advantages. However, there is a lack of an effective strategy for piano teaching. The proposed model performs efficient calculation and storage. The feasibility and effectiveness of the proposed framework are verified using the analysis of the actual dataset. The verification results show that it is feasible and valuable to find the potential relevance of multimedia-assisted piano teaching evaluation.

Research Article

Modeling of Child Stress-State Identification Based on Biometric Information in Mobile Environment

A technology must be developed to automatically identify extreme stress states of children who cannot properly express their emotions when recognizing dangerous situations, which threaten the safety of children, in real time. This study presents a stress-state identification model for children based on machine learning, biometric data, a smart band for collecting biometric data, and a mobile application for monitoring the stress state of the child classified. In addition, through an experiment comparing a dataset using only voice data and a dataset using both voice and heart rate data, we aimed to verify the effectiveness of the combination of the two biosignal datasets. As a result of the experiment, the SVM model showed the highest performance with an accuracy of 88.53% for the dataset using both voice data and heart rate data. The results of this study presented strong implications for the possibility of automating the stress-state identification of a child, and it is expected that the developed method can be used to take preventive measures for dangerous situations to children.

Mobile Information Systems
 Journal metrics
Acceptance rate37%
Submission to final decision102 days
Acceptance to publication42 days
CiteScore3.900
Impact Factor1.508
 Submit