Table of Contents Author Guidelines Submit a Manuscript
Mobile Information Systems
Volume 2016, Article ID 2676589, 25 pages
http://dx.doi.org/10.1155/2016/2676589
Review Article

Survey of Promising Technologies for 5G Networks

1Department of Electronics Engineering, Kookmin University, Seoul, Republic of Korea
2Department of Computer Engineering, Ajou University, Suwon, Republic of Korea

Received 1 April 2016; Revised 18 October 2016; Accepted 25 October 2016

Academic Editor: Yuh-Shyan Chen

Copyright © 2016 Nam Tuan Le et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Pirinen, “A brief overview of 5G research activities,” in Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity (5GU '14), pp. 17–22, November 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. W. E. Dong, W. Nan, and L. Xu, “QoS-oriented monitoring model of cloud computing resources availability,” in Proceedings of the International Conference on Computational and Information Sciences (ICCIS '13), pp. 1537–1540, Hubai, China, June 2013.
  3. A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward elastic distributed SDN/NFV controller for 5G mobile cloud management systems,” IEEE Access, vol. 3, pp. 2055–2064, 2015. View at Publisher · View at Google Scholar
  4. H. Wu, L. Hamdi, and N. Mahe, “TANGO: a flexible mobility-enabled architecture for online and offline mobile enterprise applications,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '14), pp. 2982–2987, Istanbul, Turkey, April 2014.
  5. W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-defined networking: past, present, and future of programmable networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Horvath, D. Nedbal, and M. Stieninger, “A literature review on challenges and effects of software defined networking,” Procedia Computer Science, vol. 64, pp. 552–561, 2015. View at Publisher · View at Google Scholar
  8. I. F. Akyildiz, P. Wang, and S.-C. Lin, “SoftAir: a software defined networking architecture for 5G wireless systems,” Computer Networks, vol. 85, pp. 1–18, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. Open Networking Foundation (ONF), https://www.opennetworking.org.
  10. Open Networking Foundation (ONF), OpenFlow-Enable SDN and Network Function Virtualization, 2014.
  11. N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008. View at Publisher · View at Google Scholar
  12. F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: from concept to implementation,” IEEE Communications Surveys and Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. L. I. B. López, A. L. V. Caraguay, L. J. G. Villalba, and D. López, “Trends on virtualisation with software defined networking and network function virtualisation,” IET Networks, vol. 4, no. 5, pp. 255–263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward a software-based network: integrating software defined networking and network function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–41, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. “7 Advantages of Software Defined Networking,” http://www.ingrammicroadvisor.com/data-center/7-advantages-of-software-defined-networking.
  16. N. L. Geller, D.-Y. Kim, and X. Tian, “Smart technology in lung disease clinical trials,” Chest, vol. 149, no. 1, pp. 22–26, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. Ericsson, “Cellular Networks for Massive IoT,” Ericsson White paper [Online], 2016, http://www.ericsson.com/news/160106-cellular-networks-massive-iot_244039856_c.
  18. 5G-PPP, “5G Automotive Vision—White Paper on Automotive Vertical sector,” October 2015.
  19. OpenFlow, “OpenFlow switch specification version 1.5.0,” 2014, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf.
  20. Infinera, “Transport SDN,” 2013, [Online], http://www.infinera.com/go/sdn/index.php.
  21. A. Doria, J. H. Salim, R. Haas et al., “Forwarding and control element separation (ForCES) protocol specification,” Internet Engineering Task Force, 2010, http://www.ietf.org/rfc/rfc5810.txt.
  22. B. Pfaff and B. Davie, “The Open vSwitch database management protocol,” Internet Engineering Task Force, RFC 7047 (Informational), https://tools.ietf.org/pdf/draft-pfaff-ovsdb-proto-02.pdf.
  23. H. Song, “Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding plane,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN '13), pp. 127–132, August 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Song, J. Gong, J. Song, and J. Yu, “Protocol oblivious forwarding (POF),” 2013, http://www.poforwarding.org.
  25. M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbacher, “OpFlex control protocol: Internet Engineering Task Force,” Internet Draft, April 2014, http://tools.ietf.org/html/draft-smith-opflex-00.
  26. G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: programming platform-independent stateful OpenFlow applications inside the switch,” SIGCOMM Computing Communication Review, vol. 44, no. 2, pp. 44–51, 2014. View at Publisher · View at Google Scholar
  27. M. Sune, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis, “An OpenFlow implementation for network processors,” in Proceedings of the 3rd European Workshop on Software Defined Networks (EWSDN '14), pp. 123–124, Budapest, Hungary, September 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Parniewicz, R. D. Corin, L. Ogrodowczyk et al., “Design and implementation of an OpenFlow hardware abstraction layer,” in Proceedings of the ACM SIGCOMM Workshop on Distributed Cloud Computing, pp. 71–76, Chicago, Ill, USA, August 2014.
  29. B. Belter, D. Parniewicz, L. Ogrodowczyk et al., “Hardware abstraction layer as an SDN-enabler for non-OpenFlow network equipment,” in Proceedings of the 3rd European Workshop on Software Defined Networks (EWSDN '14), pp. 117–118, IEEE, Budapest, Hungary, September 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Belter, A. Binczewski, K. Dombek et al., “Programmable abstraction of datapath,” in Proceedings of the 3rd European Workshop on Software-Defined Networks (EWSDN '14), pp. 7–12, September 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of programmable networks,” ACM SIGCOMM Computer Communication Review, vol. 11, no. 12, 2013. View at Google Scholar
  32. J. Dix, “Clarifying the role of software-defined networking northbound APIs,” May 2013, http://www.networkworld.com/article/2165901/lan-wan/clarifying-the-role-of-software-defined-networking-northbound-apis.html.
  33. NOX, http://archive.openflow.org/downloads/Workshop2009/OpenFlowWorkshop-MartinCasado.pdf.
  34. POX, http://searchsdn.techtarget.com/definition/POX.
  35. D. Erickson, https://openflow.stanford.edu/display/Beacon/Home.
  36. Floodlight is an Open SDN Controller, http://www.projectfloodlight.org/floodlight/.
  37. A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: traffic matrix estimator for OpenFlow networks,” in Proceedings of the in 11th international conference on Passive and Active Measurement, pp. 201–210, 2010.
  38. Y. S. P. Baskett, W. Zeng, and B. Guttersohn, “SDNAN: software defined networking in Ad hoc networks of smartphones,” in Proceedings of the IEEE 10th Consumer Communications and Networking Conference (CCNC '13), pp. 861–862, Las Vegas, Nev, USA, January 2013.
  39. M. Jarschel and R. Pries, “An OpenFlow-based energy efficient data center approach,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 87–88, 2012. View at Google Scholar
  40. Z. Kerravala, “As the value of enterprise networks escalates, so does the need for configuration management,” Enterprise Computing & Networking, The Yankee Group Report, Boston, Mass, USA, 2004. View at Google Scholar
  41. H. Kim and N. Feamster, “Improving network management with software defined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi, “Hierarchical policies for software defined networks,” in Proceedings of the 1st ACM International Workshop on Hot Topics in Software Defined Networks (HotSDN '12), pp. 37–42, Helsinki, Finland, August 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, “Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments,” Computer Networks, vol. 62, pp. 122–136, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. “The Zettabyte Era: Trends and Analysis, white paper,” May 2015, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html.
  45. H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: an openflow controller design for multimedia delivery with end-to-end quality of service over software-defined networks,” in Proceedings of the Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC '12), pp. 1–8, Hollywood, Calif, USA, December 2012.
  46. A. Gupta and R. K. Jha, “A survey of 5G network: architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015. View at Publisher · View at Google Scholar
  47. P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design considerations for a 5G network architecture,” IEEE Communications Magazine, vol. 52, no. 11, pp. 65–75, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using open flow: a survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 493–512, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Wübben, P. Rost, J. S. Bartelt et al., “Benefits and impact of cloud computing on 5G signal processing: flexible centralization through cloud-RAN,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. CloudAudit: Automated Audit, Assertion, Assessment, and Assurance, http://www.cloudaudit.org.
  51. Cloud Standards Customer Council, [Online], http://www.cloud-council.org/.
  52. “DeltaCloud,” http://incubator.apache.org/deltacloud.
  53. “OASIS Identity in the Cloud (IDCloud),” http://www.oasisopen.org.
  54. OpenStack, http://www.openstack.org.
  55. G. A. Lewis, “The role of standards in cloud-computing interoperability,” Technical Note, Carnegie Mellon University, 2012. View at Google Scholar
  56. Open Cloud Consortium. [Online], http://opencloudconsortium.org.
  57. M. Chen, Y. Zhang, Y. Li, S. Mao, and V. C. M. Leung, “EMC: emotion-aware mobile cloud computing in 5G,” IEEE Network, vol. 29, no. 2, pp. 32–38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. CloudFoundry. [Online], https://www.cloudfoundry.org.
  59. Open Cloud Computing Interface. [Online], http://occi-wg.org.
  60. The Open Group Cloud Work Group, https://collaboration.opengroup.org/.
  61. Distributed Management Task Force (DMTF). [Online], http://www.dmtf.org.
  62. Open Data Center Alliance. [Online], http://www.opendatacenteralliance.org.
  63. Y. Amanatullah, C. Lim, H. P. Ipung, and A. Juliandri, “Toward cloud computing reference architecture: cloud service management perspective,” in Proceedings of the International Conference on ICT for Smart Society (ICISS '13), Jakarta, Indonesia, June 2013.
  64. Standards Acceleration to Jumpstart Adoption of Cloud Computing. [Online], http://www.nist.gov.
  65. TM Forum Cloud Services Initiative, http://www.tmforum.org.
  66. CloudCommons, Introducing the Service Measurement Index, Cloud Service Measurement Initiative Consortium, 2012.
  67. J. Archer, N. Puhlmann, A. Boehme, P. Kurtz, D. Cullinane, and J. Reavis, Quick Guide to the Reference Architecture: Trusted Cloud Initiative, Cloud Security Alliance, 2011.
  68. F. Liu, J. Tong, J. Mao et al., “NIST cloud computing reference architecture,” Special Publication 500-292, National Institute of Standards and Technology, U.S. Department of Commerce, 2011. View at Google Scholar
  69. CCRA Team and M. Buzetti, Cloud Computing Reference Architecture 2.0: Overview, IBM Corporation, 2011.
  70. J. B. Abdo, J. Demerjian, H. Chaouchi, K. Barbar, and G. Pujolle, “Operator centric mobile cloud architecture,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '14), pp. 2982–2987, IEEE, Istanbul, Turkey, April 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. The Cloud Takes Shape, Global Cloud Survey: The Implementation Challenge, KPMG International Cooperative, 2013.
  72. International Telecommunication Union, “Next Generation Networks—frameworks and functional architecture models—overview of the Internet of things”.
  73. IERC (European Research Cluster on the Internet of Things) position paper, http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Standardization_Final.pdf.
  74. IEEE Standards Association, “Internet of Things Related Standards,” http://standards.ieee.org/innovate/iot/stds.html.
  75. Internet of Things Global Standards Initiative, http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx.
  76. Concluded Focus Groups, http://www.itu.int/en/ITU-T/focusgroups/Pages/concluded.aspx.
  77. ITU-T Focus Group on M2M Service Layer, “M2M service layer: Requirements and architectural framework,” https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-M2M-2014-D2.1-PDF-E.pdf.
  78. IEEE Standards Association, “Internet of Things,” http://standards.ieee.org/innovate/iot/index.html.
  79. IEEE Standards Association, “IEEE Standards Activities in the Intelligent Transportation Systems (ITS) Space (ICT Focus),” http://standards.ieee.org/develop/msp/its.pdf.
  80. IEEE Standards Association, “IEEE Standards Activities in the Network and Information Security (NIS) Space,” http://standards.ieee.org/develop/msp/nis.pdf.
  81. IEEE Standards Association, “IEEE Standards Activities in the Smart Grid Space (ICT Focus),” May 2013, http://standards.ieee.org/develop/msp/smartgrid.pdf.
  82. Wikipedia, “ISO/IEC JTC 1,” http://en.wikipedia.org/wiki/ISO/IEC_JTC_1.
  83. Wikipedia, “ISO/IEC JTC1/WG7,” http://en.wikipedia.org/wiki/ISO/IEC_JTC_1/WG_7.
  84. Wikipedia, “ISO/IEC JTC 1/SC 31 Automatic identification and data capture techniques,” https://en.wikipedia.org/wiki/ISO/IEC_JTC_1/SC_31_Automatic_identification_and_data_capture_techniques.
  85. ETSI Technology Clusters, http://www.etsi.org/technologies-clusters.
  86. ETSI, “Work programme 2013-2014,” http://www.etsi.org/images/files/WorkProgramme/etsi-work-programme-2013-2014.pdf.
  87. Terms of Reference (ToR) for Technical Committee, “Smart M2M,” https://portal.etsi.org/SmartM2M/SmartM2M_ToR.asp.
  88. Nokia, “LTE-M—optimizing LTE for the Internet of Things,” White Paper, Nokia, 2015, http://networks.nokia.com/file/34496/lte-m-optimizing-lte-for-the-internet-of-things. View at Google Scholar
  89. N. Olifer and V. Olifer, Computer Networks: Principles, Technologies and Protocols for Network Design, John Wiley & Sons, Hoboken, NJ, USA, 2005, http://au.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000983.html.
  90. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for the internet of things: a survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Distefano, G. Merlino, and A. Puliafito, “A utility paradigm for IoT: the sensing cloud,” Pervasive and Mobile Computing, vol. 20, pp. 127–144, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, “Opportunistic IoT: exploring the harmonious interaction between human and the internet of things,” Journal of Network and Computer Applications, vol. 36, no. 6, pp. 1531–1539, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Singh, G. Tripathi, and A. J. Jara, “A survey of Internet-of-Things: future vision, architecture, challenges and services,” in Proceedings of the IEEE World Forum on Internet of Things (WF-IoT '14), pp. 287–292, IEEE, Seoul, South Korea, March 2014. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: the Internet of things architecture, possible applications and key challenges,” in Proceedings of the 10th International Conference on Frontiers of Information Technology (FIT '12), pp. 257–260, IEEE, Islamabad, Pakistan, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, “Study and application on the architecture and key technologies for IOT,” in Proceedings of the 2nd International Conference on Multimedia Technology (ICMT '11), pp. 747–751, Hangzhou, China, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Eleftherakis, D. Pappas, T. Lagkas, K. Rousis, and O. Paunovski, “Architecting the IoT paradigm: a middleware for autonomous distributed sensor networks,” International Journal of Distributed Sensor Networks, vol. 11, no. 12, Article ID 139735, 17 pages, 2015. View at Publisher · View at Google Scholar
  97. S. Martin, G. Diaz, I. Plaza, E. Ruiz, M. Castro, and J. Peire, “State of the art of frameworks and middleware for facilitating mobile and ubiquitous learning development,” The Journal of Systems and Software, vol. 84, no. 11, pp. 1883–1891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Bellavista, R. Montanari, and S. K. Das, “Mobile social networking middleware: a survey,” Pervasive and Mobile Computing, vol. 9, no. 4, pp. 437–453, 2013. View at Publisher · View at Google Scholar · View at Scopus
  99. V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for pervasive computing: a survey,” Pervasive and Mobile Computing, vol. 9, no. 2, pp. 177–200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Qiu, H. Luo, G. Xu, R. Zhong, and G. Q. Huang, “Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP),” International Journal of Production Economics, vol. 159, pp. 4–15, 2015. View at Publisher · View at Google Scholar · View at Scopus
  101. Z. Sheng, C. Mahapatra, C. Zhu, and V. C. Leung, “Recent advances in industrial wireless sensor networks toward efficient management in IoT,” IEEE Access, vol. 3, pp. 622–637, 2015. View at Publisher · View at Google Scholar
  102. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: a survey on enabling technologies, protocols, and applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” Procedia Computer Science, vol. 52, pp. 1089–1094, 2015. View at Publisher · View at Google Scholar
  104. P. Castillejo, J. F. Martinez, L. Lopez, and G. Rubio, “An internet of things approach for managing smart services provided by wearable devices,” International Journal of Distributed Sensor Networks, vol. 9, no. 2, Article ID 190813, 2013. View at Publisher · View at Google Scholar
  105. W. He, G. Yan, and L. D. Xu, “Developing vehicular data cloud services in the IoT environment,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1587–1595, 2014. View at Publisher · View at Google Scholar · View at Scopus
  106. S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the implementation of IoT for environmental condition monitoring in homes,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3846–3853, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, “The internet of things for health care: a comprehensive survey,” IEEE Access, vol. 3, pp. 678–708, 2015. View at Publisher · View at Google Scholar
  108. Z. Bi, L. D. Xu, and C. Wang, “Internet of things for enterprise systems of modern manufacturing,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1537–1546, 2014. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for Internet of things: a survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70–95, 2016. View at Publisher · View at Google Scholar
  110. A. Osseiran, F. Boccardi, V. Braun et al., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, 2014. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Aijaz and A.-H. Aghvami, “PRMA-based cognitive machine-to-machine communications in smart grid networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3608–3623, 2015. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Zhang, R. Yu, M. Nekovee, Y. Liu, S. Xie, and S. Gjessing, “Cognitive machine-to-machine communications: visions and potentials for the smart grid,” IEEE Network, vol. 26, no. 3, pp. 6–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Aijaz and A. H. Aghvami, “Cognitive machine-to-machine communications for Internet-of-things: a protocol stack perspective,” IEEE Internet of Things Journal, vol. 2, no. 2, pp. 103–112, 2015. View at Publisher · View at Google Scholar
  114. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The Internet of things for health care: a comprehensive survey,” IEEE Access, vol. 3, pp. 678–708, 2015. View at Publisher · View at Google Scholar
  115. Y. J. Fan, Y. H. Yin, L. D. Xu, Y. Zeng, and F. Wu, “IoT-based smart rehabilitation system,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1568–1577, 2014. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Catarinucci, D. de Donno, L. Mainetti et al., “An IoT-aware architecture for smart healthcare systems,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 515–526, 2015. View at Publisher · View at Google Scholar
  117. L. C. De Silva, C. Morikawa, and I. M. Petra, “State of the art of smart homes,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7, pp. 1313–1321, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Chen, D. J. Cook, and A. S. Crandall, “The user side of sustainability: modeling behavior and energy usage in the home,” Pervasive and Mobile Computing, vol. 9, no. 1, pp. 161–175, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. K.-K. Du, Z.-L. Wang, and M. Hong, “Human machine interactive system on smart home of IoT,” The Journal of China Universities of Posts and Telecommunications, vol. 20, no. 1, pp. 96–99, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. C.-L. Wu and L.-C. Fu, “Design and realization of a framework for human-system interaction in smart homes,” IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, vol. 42, no. 1, pp. 15–31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. Ó. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Ancillotti, R. Bruno, and M. Conti, “The role of communication systems in smart grids: architectures, technical solutions and research challenges,” Computer Communications, vol. 36, no. 17-18, pp. 1665–1697, 2013. View at Publisher · View at Google Scholar · View at Scopus
  123. D.-M. Han and J.-H. Lim, “Smart home energy management system using IEEE 802.15.4 and zigbee,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1403–1410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. C. H. Liu, J. Fan, J. W. Branch, and K. K. Leung, “Toward QoI and energy-efficiency in internet-of-things sensory environments,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 4, pp. 473–487, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Calderoni, D. Maio, and S. Rovis, “Deploying a network of smart cameras for traffic monitoring on a ‘city kernel’,” Expert Systems with Applications, vol. 41, no. 2, pp. 502–507, 2014. View at Publisher · View at Google Scholar · View at Scopus
  126. S. P. Lau, G. V. Merrett, A. S. Weddell, and N. M. White, “A traffic-aware street lighting scheme for smart cities using autonomous networked sensors,” Computers & Electrical Engineering, vol. 45, pp. 192–207, 2015. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Zheng and N. Geroliminis, “Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing,” Transportation Research Part B: Methodological, vol. 83, pp. 36–58, 2016. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Botta, W. D. Donato, V. Persico, and A. Pescapé, “Integration of cloud computing and internet of things: a survey,” Future Generation Computer Systems, vol. 56, pp. 684–700, 2016. View at Publisher · View at Google Scholar · View at Scopus
  129. M. R. Abdmeziem and D. Tandjaoui, “An end-to-end secure key management protocol for e-health applications,” Computers & Electrical Engineering, vol. 44, pp. 184–197, 2015. View at Publisher · View at Google Scholar
  130. B. Xu, L. D. Xu, H. Cai, C. Xie, J. Hu, and F. Bu, “Ubiquitous data accessing method in iot-based information system for emergency medical services,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1578–1586, 2014. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based systems for health monitoring and prognosis,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 40, no. 1, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. S. R. Moosavi, T. N. Gia, A. M. Rahmani et al., “SEA: a secure and efficient authentication and authorization architecture for IoT-based healthcare using smart gateways,” Procedia Computer Science, vol. 52, pp. 452–459, 2015. View at Publisher · View at Google Scholar
  133. R. Li, B. Lu, and K. D. McDonald-Maier, “Cognitive assisted living ambient system: a survey,” Digital Communications and Networks, vol. 1, no. 4, pp. 229–252, 2015. View at Publisher · View at Google Scholar
  134. A. Hussain, R. Wenbi, A. L. Da Silva, M. Nadher, and M. Mudhish, “Health and emergency-care platform for the elderly and disabled people in the Smart City,” Journal of Systems and Software, vol. 110, pp. 253–263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  135. S. J. Liu and G. Q. Zhu, “The application of GIS and IOT technology on building fire evacuation,” Procedia Engineering, vol. 71, pp. 577–582, 2014. View at Publisher · View at Google Scholar
  136. Z. Yinghua, F. Guanghua, Z. Zhigang, H. Zhian, L. Hongchen, and Y. Jixing, “Discussion on application of IOT technology in coal mine safety supervision,” Procedia Engineering, vol. 43, pp. 233–237, 2012. View at Publisher · View at Google Scholar
  137. E. Sun, X. Zhang, and Z. Li, “The internet of things (IOT) and cloud computing (CC) based tailings dam monitoring and pre-alarm system in mines,” Safety Science, vol. 50, no. 4, pp. 811–815, 2012. View at Google Scholar
  138. V. R. L. Shen, H.-Y. Lai, and A.-F. Lai, “The implementation of a smartphone-based fall detection system using a high-level fuzzy Petri net,” Applied Soft Computing, vol. 26, pp. 390–400, 2015. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges,” Computers and Electronics in Agriculture, vol. 118, pp. 66–84, 2015. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Han, D. Zhang, J. Bo, and Z. Zhang, “Hydrological monitoring system design and implementation based on IOT,” Physics Procedia, vol. 33, pp. 449–454, 2012. View at Publisher · View at Google Scholar
  141. A. S. Voulodimos, C. Z. Patrikakis, A. B. Sideridis, V. A. Ntafis, and E. M. Xylouri, “A complete farm management system based on animal identification using RFID technology,” Computers and Electronics in Agriculture, vol. 70, no. 2, pp. 380–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Sarangi, J. Umadikar, and S. Kar, “Automation of agriculture support systems using wisekar: case study of a crop-disease advisory service,” Computers and Electronics in Agriculture, vol. 122, pp. 200–210, 2016. View at Publisher · View at Google Scholar · View at Scopus
  143. W. He and L. D. Xu, “Integration of distributed enterprise applications: a survey,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 35–42, 2014. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Fagiani, S. Squartini, L. Gabrielli, S. Spinsante, and F. Piazza, “A review of datasets and load forecasting techniques for smart natural gas and water grids: analysis and experiments,” Neurocomputing, vol. 170, pp. 448–465, 2015. View at Publisher · View at Google Scholar · View at Scopus
  145. L. D. Xu, W. He, and S. Li, “Internet of things in industries: a survey,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, 2014. View at Publisher · View at Google Scholar · View at Scopus
  146. M. S. Jamil, M. A. Jamil, A. Mazhar, A. Ikram, A. Ahmed, and U. Munawar, “Smart environment monitoring system by employing wireless sensor networks on vehicles for pollution free smart cities,” Procedia Engineering, vol. 107, pp. 480–484, 2015. View at Publisher · View at Google Scholar
  147. G. Xu, G. Q. Huang, and J. Fang, “Cloud asset for urban flood control,” Advanced Engineering Informatics, vol. 29, no. 3, pp. 355–365, 2015. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Zhu, V. C. M. Leung, L. Shu, and E. C. Ngai, “Green Internet of Things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015. View at Publisher · View at Google Scholar
  149. F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for green internet of things,” IEEE Systems Journal, no. 99, pp. 1–12, 2015. View at Publisher · View at Google Scholar · View at Scopus
  150. 3GPP, “TR 36.888, Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE,” [Online], https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2578.
  151. SIGFOX, SIGFOX White Paper, SIGFOX, 2014.
  152. LoRa Alliance, “LoRaWAN- what is it,” LoRa Alliance White paper, 2015. [Online], https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf.
  153. X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An overview of 3GPP device-to-device proximity services,” IEEE Communications Magazine, vol. 52, no. 4, pp. 40–48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Communications Surveys and Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014. View at Publisher · View at Google Scholar · View at Scopus
  155. 3GPP TR 22.803, “Feasibility study for Proximity Services (ProSe) (Release 12),” v. 12.2.0, June 2012.
  156. C. Campolo, A. Molinaro, and R. Scopigno, Vehicular Ad Hoc Networks: Standards, Solutions, and Research, Springer, Berlin, Germany, 2015.
  157. ETSI, “Intelligent Transport Systems ITS; Vehicular communications; Basic set of applications; Part 2: specification of cooperative awareness basic service,” EN 302 637-2, 2014. View at Google Scholar
  158. ETSI, “ITS; decentralized environmental notification messages (DENM),” EN 102 869-X, 2012.
  159. SAE International and DSRC Committee, “DSRC message communication minimum performance requirements: basic safety message for vehicle safety applications,” SAE Draft Std. J2945.1 Revision 2.2, SAE, 2011. View at Google Scholar