Mathematical Problems in Engineering
 Journal metrics
Acceptance rate27%
Submission to final decision64 days
Acceptance to publication34 days
CiteScore1.800
Impact Factor1.009

Formation and Penetration Capability of an Annular-Shaped Charge

Read the full article

 Journal profile

Mathematical Problems in Engineering is a broad-based journal publishing results of rigorous engineering research across all disciplines, carried out using mathematical tools.

 Editor spotlight

Chief Editor, Professor Guangming Xie, is currently a full professor of dynamics and control with the College of Engineering, Peking University. His research interests include complex system dynamics and control and intelligent and biomimetic robots.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Joint Subspace and Low-Rank Coding Method for Makeup Face Recognition

Facial makeup significantly changes the perceived appearance of the face and reduces the accuracy of face recognition. To adapt to the application of smart cities, in this study, we introduce a novel joint subspace and low-rank coding method for makeup face recognition. To exploit more discriminative information of face images, we use the feature projection technology to find proper subspace and learn a discriminative dictionary in such subspace. In addition, we use a low-rank constraint in the dictionary learning. Then, we design a joint learning framework and use the iterative optimization strategy to obtain all parameters simultaneously. Experiments on real-world dataset achieve good performance and demonstrate the validity of the proposed method.

Research Article

Study on Method of Determining the Safe Operation Window of Drilling Fluid Density with Credibility in Deep Igneous Rock Strata

It is difficult to determine the safe operation window of drilling fluid density (SOWDFD) for deep igneous rock strata. Although the formation three-pressure (pore pressure, collapse pressure, and fracture pressure) prediction method with credibility improves the accuracy of formation three-pressure prediction, it still has a large error for deep igneous strata. To solve this problem, a modified method of the SOWDFD in deep igneous rock strata is proposed based on the leakage statistics of adjacent wells. This method is based on the establishment of the SOWDFD with credibility. Through statistical analysis of drilling fluid density of igneous rock leaky formation group in adjacent wells, the fracture leakage law of the formation is revealed and the upper limit of leak-off pressure containing probability information is obtained. Finally, the modified SOWDFD with credibility for deep igneous rock strata is formed. In this work, the proposed method was used to compute the SOWDFD with credibility of SHB well in Xinjiang, China. Results show that the modified density window is consistent with the field drilling conditions and can reflect the narrow density window in the Permian and lower igneous strata. Combined with the formation three-pressure prediction method with credibility and the actual leakage law of adjacent wells, it can effectively improve the prediction accuracy of the SOWDFD for deep igneous rock strata. The findings of the study can help in better understanding of the complex downhole geological environment in deep igneous rock strata and making reasonable drilling design scheme.

Research Article

Optimal Crop Selection Using Gravitational Search Algorithm

For the economic growth of the crop, the optimal utilization of soil is found to be an open area of research. An efficient utilization includes various advantages such as watershed insurance, expanded biodiversity, and reduction of provincial destitution. Generally, soils present synthetic confinements for crop improvement. Therefore, in this paper, a novel diversified crop model is proposed to predict the suitable soil for good production of the crop. The proposed model utilizes a quantum value-based gravitational search algorithm (GSA) to optimize the best solution. Various features of soil are required to be investigated before crop selection. These features are refined further by applying quantum optimization. The crop selection based upon the soil requirement does not require any additional fertilizers which will reduce the production cost. Thus, the proposed model can select the optimal crop according to the soil components using the gravitational search algorithm. Therefore, the gravitational search algorithm is applied to the quantum values obtained from the crop and soil dataset. Extensive experiments show that the proposed model achieves an optimal selection of crops.

Research Article

Characteristics of Flow Movement in Complex Canal System and Its Influence on Sudden Pollution Accidents

This study aimed to determine the split ratio, flow-field structure, and effect of different shaped channels to sudden pollution accidents in a generalized complex canal system of a wetland park, both experimentally and numerically. The three-dimensional instantaneous velocities at a typical section of each channel in the generalized model were measured experimentally using an acoustic Doppler velocimeter. The results showed that the split ratio calculation formula of three parallel channels could be derived under the condition of considering the frictional head and the local head losses. The water depth, velocities, and pollutant diffusion were widely influenced by changes in the cross-sectional shape and channel plane shape. The pollutants were trapped by stable vortices and transverse circulation due to shear force and secondary flow, thus delaying the diffusion of pollutants. The research results reported herein can help provide technical support for the normal operation of complex canal systems.

Research Article

Control Force Compensation and Wear Monitoring of Variable Stiffness Joints in Drive Machining Process

Aiming at the joint flexibility and wear state existing in the process of driving mechanical parts, this paper first proposes a stiffness and position decoupling control method for variable stiffness joints, which realizes the joint position control and the unity of joint compliance. The joint stiffness model was obtained by using the static relationship between the Jacobian matrix and the model, and the nonlinear equations composed of the mechanical model and the stiffness model of the variable stiffness device were solved by the optimization method to realize the nonlinear decoupling of the stiffness and position of the variable stiffness joint. Secondly, this paper proposes an online monitoring method of wear state in the machining process based on machine tool information. In this method, OPC-UA communication technology was used to collect and store the information of CNC machine tools online, and the internal process information related to the wear of the machine tools was obtained. Based on such information and the corresponding wear information, a wear state recognition model is established by using a convolutional neural network. The feasibility and effectiveness of the proposed compliance control scheme and the performance of online monitoring of wear condition are analysed and verified by simulation experiments.

Research Article

Uniformly Most Reliable Three-Terminal Graph of Dense Graphs

A graph with specified target vertices in vertex set is a -terminal graph. The -terminal reliability is the connection probability of the fixed target vertices in a -terminal graph when every edge of this graph survives independently with probability . For the class of two-terminal graphs with a large number of edges, Betrand, Goff, Graves, and Sun constructed a locally most reliable two-terminal graph for close to 1 and illustrated by a counterexample that this locally most reliable graph is not the uniformly most reliable two-terminal graph. At the same time, they also determined that there is a uniformly most reliable two-terminal graph in the class obtained by deleting an edge from the complete graph with two target vertices. This article focuses on the uniformly most reliable three-terminal graph of dense graphs with vertices and edges. First, we give the locally most reliable three-terminal graphs of and in certain ranges for close to 0 and 1. Then, it is proved that there is no uniformly most reliable three-terminal graph with specific and , where and . Finally, some uniformly most reliable graphs are given for vertices and edges, where and or and .

Mathematical Problems in Engineering
 Journal metrics
Acceptance rate27%
Submission to final decision64 days
Acceptance to publication34 days
CiteScore1.800
Impact Factor1.009
 Submit