`Mathematical Problems in EngineeringVolume 2006, Article ID 52315, 13 pageshttp://dx.doi.org/10.1155/MPE/2006/52315`

## Testing a differential-algebraic equation solver in long-term voltage stability simulation

Departamento de Engenharia de Electricidade, CCET, Universidade Federal do Maranhão, Campus do Bacanga, Maranhão, São Luís 65080-040, Brazil

Received 10 August 2004; Revised 20 June 2005; Accepted 7 July 2005

Copyright © 2006 José E. O. Pessanha and Alex A. Paz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. K. Anupindi, A. Skjellum, P. Coddington, and G. Fox, “Parallel differential-algebraic equation solvers for power system transient stability analysis,” in Proceeding of the Scalable Parallel Libraries Conference (Mississippi, 1993), pp. 240–244, IEEE Computer Society Press, Washington, DC, 1993.
2. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Pennsylvania, 1998.
3. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, vol. 14 of Classics in Applied Mathematics, SIAM, Pennsylvania, 1996.
4. R. R. Burden and J. D. Faires, Numerical Analysis, PWS-Kent, Massachusetts, 4th edition, 1989.
5. J. Deuse and M. Stubbe, “Dynamic simulation of voltage collapse,” in proceedings IEEE/PES Summer Meeting (Washington, DC, 1992), paper 92 SM 396-2 PWRS.
6. W. M. Lioen, J. J. B. de Swart, and W. A. van der Veen, “Test set for IVP solvers,” Tech. Rep. NM-R9615, Department of Mathematics, CWI, Amsterdam, 1996.
7. L. R. Petzold, “A description of DASSL: a differential/algebraic system solver,” in Scientific Computing (Montreal, Que., 1982), R. S. Stepleman, Ed., IMACS Trans. Sci. Comput., I, pp. 65–68, IMACS, New Jersey, 1983.
8. P. W. Sauer, S. Ahmed-Zaid, and P. V. Kokotovic, “An integral manifold approach to reduced order dynamic modeling of synchronous machines,” IEEE Transactions on Power Systems, vol. 3, no. 1, pp. 17–23, 1988.
9. P. W. Sauer, S. Ahmed-Zaid, and M. A. Pai, “Systematic inclusion of stator transients in reduced order synchronous machine models,” IEEE Transactions on Power Apparatus Systems, vol. PAS-103, no. 6, pp. 1348–1354, 1984.
10. P. W. Sauer, D. J. LaGasse, S. Ahmed-Zaid, and M. A. Pai, “Reduced order modeling of interconnected multimachine power systems using time-scale decomposition,” IEEE Transactions on Power Apparatus and Systems, vol. PWRS-2, no. 2, pp. 310–319, 1987.
11. P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Prentice-Hall, New Jersey, 1998.
12. M. Secanell and F. Córcoles, “DAEs implementation of dynamic power systems,” in 10th International Conference on Harmonics and Quality of Power (Rio de Janeiro, 2002), vol. 2, pp. 663–669, 2002.
13. C. W. Taylor, Power System Voltage Stability, McGraw-Hill, New York, 1994.