Abstract

This paper investigates the problems of delay-dependent passivity and passivation of a class of linear interconnected time-delay systems with particular emphasis on multiarea reheat power systems. This class contains state delay in the dynamics and observation at the subsystem (local) level. A new state transformation is developed to exhibit the delay dependence in the system dynamics and a less conservative passivity-bounding inequality is incorporated. Through the analytical development, it is established that the passivity condition can be cast in a linear matrix inequality (LMI) format at the subsystem level thereby facilitating decentralized passivity analysis. For state-feedback passivation, it is proven that it is indifferent to use instantaneous or delayed decentralized state feedback. The case of dynamic output-feedback passivation is also treated. The analytical developments are simulated to a typical multiarea power system and the ensuing results show satisfactory performance.