Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2008 (2008), Article ID 394103, 13 pages
http://dx.doi.org/10.1155/2008/394103
Research Article

An Approximate Solution for Boundary Value Problems in Structural Engineering and Fluid Mechanics

1Departments of Civil Engineering and Mechanical Engineering, Mazandaran University of Technology, P.O. Box 484, Babol, Iran
2Technical and Engineering Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Received 10 January 2008; Accepted 19 May 2008

Academic Editor: David Chelidze

Copyright © 2008 A. Barari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Usmani, “On the numerical integration of a boundary value problem involving a fourth order linear differential equation,” BIT, vol. 17, no. 2, pp. 227–234, 1977. View at Google Scholar · View at MathSciNet
  2. R. A. Usmani, “An O(h6) finite difference analogue for the solution of some differential equations occurring in plate deflection theory,” Journal of the Institute of Mathematics and Its Applications, vol. 20, no. 3, pp. 331–333, 1977. View at Google Scholar · View at MathSciNet
  3. S. M. Momani, Some problems in non-Newtonian fluid mechanics, Ph.D. thesis, Wales University, Wales, UK, 1991. View at MathSciNet
  4. T. F. Ma and J. da Silva, “Iterative solutions for a beam equation with nonlinear boundary conditions of third order,” Applied Mathematics and Computation, vol. 159, no. 1, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. J.-H. He, “New interpretation of homotopy perturbation method,” International Journal of Modern Physics B, vol. 20, no. 18, pp. 2561–2568, 2006. View at Google Scholar · View at MathSciNet
  6. D. D. Ganji and A. Sadighi, “Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 411–418, 2006. View at Google Scholar · View at MathSciNet
  7. M. Rafei and D. D. Ganji, “Explicit solutions of Helmholtz equation and fifth-order Kdv equation using homotopy-perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 3, pp. 321–328, 2006. View at Google Scholar · View at MathSciNet
  8. N. H. Sweilam and M. M. Khader, “Variational iteration method for one dimensional nonlinear thermoelasticity,” Chaos, Solitons & Fractals, vol. 32, no. 1, pp. 145–149, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. S. M. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248–1255, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. M. Momani and S. Abuasad, “Application of He's variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. N. Bildik and A. Konuralp, “The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 65–70, 2006. View at Google Scholar · View at MathSciNet
  12. A. Barari, M. Omidvar, S. Gholitabar, and D. D. Ganji, “Variational iteration method and homotopy-perturbation method for solving second-order nonlinear wave equation,” in Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM '07), vol. 936, pp. 81–85, Corfu, Greece, September 2007. View at MathSciNet
  13. D. D. Ganji, M. Jannatabadi, and E. Mohseni, “Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 35–45, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. J.-H. He, “Variational iteration method—a kind of nonlinear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. Z. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27–34, 2006. View at Google Scholar · View at MathSciNet
  16. H. Tari, D. D. Ganji, and M. Rostamian, “Approximate solutions of K (2.2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 203–210, 2007. View at Google Scholar · View at MathSciNet
  17. E. Yusufoglu, “Variational iteration method for construction of some compact and non-compact structures of Klein-Gordon equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 152–158, 2007. View at Google Scholar · View at MathSciNet