Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2008, Article ID 629253, 14 pages
http://dx.doi.org/10.1155/2008/629253
Research Article

Construction of Interval Wavelet Based on Restricted Variational Principle and Its Application for Solving Differential Equations

College of Information and Electrical Engineering, China Agricultural University, P.O. Box 053, 17 Qinghua Donglu Road, Beijing 100083, China

Received 10 December 2007; Revised 25 February 2008; Accepted 31 March 2008

Academic Editor: Giuseppe Rega

Copyright © 2008 Shu-Li Mei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Cohen, I. Daubechies, and P. Vial, “Wavelets on the interval and fast wavelet transforms,” Applied and Computational Harmonic Analysis, vol. 1, no. 1, pp. 54–81, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. E. Quak and N. Weyrich, “Decomposition and reconstruction algorithms for spline wavelets on a bounded interval,” Applied and Computational Harmonic Analysis, vol. 1, no. 3, pp. 217–231, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. C. R. Ortloff, “Restricted variational principle methods for boundary value problems of kinetic theory,” Physics of Fluids, vol. 10, no. 1, pp. 230–231, 1967. View at Publisher · View at Google Scholar
  4. G. W. Wei, “Quasi wavelet and quasi interpolating wavelets,” Chemical Physics Letters, vol. 296, no. 3-4, pp. 215–222, 1998. View at Publisher · View at Google Scholar
  5. O. V. Vasilyev and S. Paolucci, “A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain,” Journal of Computational Physics, vol. 125, no. 2, pp. 498–512, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. S.-L. Mei, Q.-S. Lu, S.-W. Zhang, and L. Jin, “Adaptive interval wavelet precise integration method for partial differential equations,” Applied Mathematics and Mechanics, vol. 26, no. 3, pp. 364–371, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  7. S.-L. Mei, Q.-S. Lu, and S.-W. Zhang, “An adaptive wavelet precise integration method for partial differential equations,” Chinese Journal of Computational Physics, vol. 21, no. 6, pp. 523–530, 2004. View at Google Scholar
  8. D.-C. Wan and G.-W. Wei, “The study of quasi wavelets based numerical method applied to Burgers' equations,” Applied Mathematics and Mechanics, vol. 21, no. 10, pp. 1099–1110, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. J. J. Leader, Numerical Analysis and Scientific Computation, Addison-Wesley, Reading, Mass, USA, 2004.
  10. I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1992. View at Zentralblatt MATH · View at MathSciNet