Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2009, Article ID 410243, 17 pages
http://dx.doi.org/10.1155/2009/410243
Research Article

Color-Texture-Based Image Retrieval System Using Gaussian Markov Random Field Model

1Department of Management Information Systems, National Chung Hsing University, 402 Taichung, Taiwan
2Department of Computer Science and Engineering, National Chung Hsing University, 402 Taichung, Taiwan

Received 23 April 2009; Revised 10 August 2009; Accepted 5 November 2009

Academic Editor: Panos Liatsis

Copyright © 2009 Meng-Hsiun Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Y. M. Chan and I. King, “Genetic algorithm for weights assignment in dissimilarity function for trademark retrieval,” in Proceedings of the 3rd International Conference on Visual Information and Information Systems, vol. 1614 of Lecture Notes in Computer Science, pp. 557–565, 1999. View at Publisher · View at Google Scholar
  2. R. C. Joshi and S. Tapaswi, “Image similarity: a genetic algorithm based approach,” World Academy of Science, Engineering and Technology, vol. 27, pp. 327–331, 2007. View at Google Scholar
  3. W. J. Kou, Study on image retrieval and ultrasonic diagnosis of breast tumors, Ph.D. Dissertation, Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan, 2001.
  4. B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee, “Content-based image retrieval using a composite color-shape approach,” Information Processing & Management, vol. 34, no. 1, pp. 109–120, 1998. View at Publisher · View at Google Scholar
  5. X. J. Shen and Z. F. Wang, “Feature selection for image retrieval,” Electronics Letters, vol. 42, no. 6, pp. 337–338, 2006. View at Publisher · View at Google Scholar
  6. Z. Stejić, Y. Takama, and K. Hirota, “Genetic algorithm-based relevance feedback for image retrieval using local similarity patterns,” Information Processing and Management, vol. 39, no. 1, pp. 1–23, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. K. Vu, K. A. Hua, and W. Tavanapong, “Image retrieval based on regions of interest,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 4, pp. 1045–1049, 2003. View at Publisher · View at Google Scholar
  8. B. Yue, SAR sea ice recognition using texture methods, M.S. thesis, University Waterloo, Waterloo, Canada, 2001.
  9. Y.-K. Chan and C.-Y. Chen, “Image retrieval system based on color-complexity and color-spatial features,” Journal of Systems and Software, vol. 71, no. 1-2, pp. 65–70, 2004. View at Publisher · View at Google Scholar
  10. Y.-K. Chan and C.-Y. Chen, “An image retrieval system based on the feature of color differences among the edges of objects,” Journal of Computer Science & Technology, vol. 5, no. 1, pp. 25–29, 2005. View at Google Scholar
  11. R. Chellappa and S. Chatterjee, “Classification of textures using Gaussian Markov random fields,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 959–963, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  12. F. S. Cohen, Z. Fan, and M. A. Patel, “Classification of rotated and scaled textured images using Gaussian Markov random field models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 192–202, 1991. View at Publisher · View at Google Scholar
  13. J. R. Smith and S. F. Chang, “Automated image retrieval using color and texture,” Tech. Rep. CU/CTR 408-95-14, Columbia University, New York, NY, USA, July 1995. View at Google Scholar
  14. J. Han and K.-K. Ma, “Fuzzy color histogram and its use in color image retrieval,” IEEE Transactions on Image Processing, vol. 11, no. 8, pp. 944–952, 2002. View at Publisher · View at Google Scholar · View at PubMed
  15. W. K. Pratt, Digital Image Processing, Wiley-Interscience, New York, NY, USA, 3rd edition, 2001.
  16. F. Liu and R. W. Picard, “Periodicity, directionality, and randomness: wold features for image modeling and retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 7, pp. 722–733, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Niblack, R. Barber, W. Equitz et al., “The QBIC project: querying images by content, using color, texture, and shape,” in Storage and Retrieval for Image and Video Databases II, vol. 1908 of Proceedings of SPIE, pp. 173–187, 1993.
  18. W. Niblack, X. Zhu, J. L. Hafner et al., “Updates to the QBIC system,” in Storage and Retrieval for Image and Video Databases VI, vol. 3312 of Proceedings of SPIE, pp. 150–161, San Jose, Calif, USA, January 1998. View at Publisher · View at Google Scholar
  19. P. W. Huang and S. K. Dai, “Design of a two-stage content-based image retrieval system using texture similarity,” Information Processing and Management, vol. 40, no. 1, pp. 81–96, 2004. View at Publisher · View at Google Scholar
  20. M.-C. Su and C.-H. Chou, “A modified version of the K-means algorithm with a distance based on cluster symmetry,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 674–680, 2001. View at Publisher · View at Google Scholar
  21. R. Chellappa, “Two-dimensional discrete Gaussian Markov random field models for image processing,” in Progress in Pattern Recognition, vol. 2, pp. 79–112, Elsevier Science B.V., Amsterdam, The Netherlands, 1985. View at Google Scholar · View at Zentralblatt MATH
  22. S. M. Choi, J. E. Lee, J. Kim, and M. H. Kim, “Volumetric object reconstruction using the 3D-MRF model-based segmentation,” IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 887–892, 1997. View at Publisher · View at Google Scholar · View at PubMed
  23. R. L. Kashyap and R. Chellappa, “Estimation and choice of neighbors in spatial-interaction models of images,” IEEE Transactions on Information Theory, vol. 29, no. 1, pp. 60–72, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. K. K. Seo, Content-Based Image Retrieval by Combining Genetic Algorithm and Support Vector Machine, vol. 4669, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar
  25. L. Ballerini, X. Li, R. B. Fisher, and J. Rees, A Query-by-Example Content-Based Image Retrieval System of Non-Melanoma Skin Lesions, vol. 5853 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, 2009.
  26. C.-C. Lai and Y.-C. Chen, “Color image retrieval based on interactive genetic algorithm,” in Proceedings of the 22nd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE '09), vol. 5579 of Lecture Notes in Computer Science, pp. 343–349, Tainan, Taiwan, June 2009. View at Publisher · View at Google Scholar
  27. K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms: Concepts and Designs, Advanced Textbooks in Control and Signal Processing, Springer, London, UK, 1999. View at MathSciNet
  28. “MEPG-7 Visual Part of Experimentation Model (XM) Version 2.0,” MPEG-7 Output Document ISO/MPEG, December 1999.