Table of Contents Author Guidelines Submit a Manuscript
Letter to the Editor
Mathematical Problems in Engineering
Volume 2009, Article ID 507370, 23 pages
http://dx.doi.org/10.1155/2009/507370
Research Article

Highly Efficient Sigma Point Filter for Spacecraft Attitude and Rate Estimation

1Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
2State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China

Received 9 July 2009; Accepted 30 September 2009

Academic Editor: Tadashi Yokoyama

Copyright © 2009 Chunshi Fan and Zheng You. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering for spacecraft attitude estimation,” Journal of Guidance, Control, and Dynamics, vol. 5, no. 5, pp. 417–429, 1982. View at Google Scholar · View at Scopus
  2. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. D. van Merwe, E. A. Wan, and S. I. Julier, “Sigma-point Kalman filters for nonlinear estimation and sensor-fusion—applications to integrated navigation,” in Proceedings of the Guidance, Navigation, and Control Conference (AIAA '04), vol. 3, pp. 1735–1764, Providence, RI, USA, August 2004.
  4. S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “New approach for filtering nonlinear systems,” in Proceedings of the American Control Conference (ACC '95), vol. 3, pp. 1628–1632, Seattle, Wash, USA, 1995.
  5. J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude estimation,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 536–542, 2003. View at Google Scholar · View at Scopus
  6. K. Lai, J. Crassidis, and R. Harman, “In-space spacecraft alignment calibration using the unscented filter,” in Proceedings of the Guidance, Navigation, and Control Conference and Exhibit (AIAA '03), Honolulu, Hawaii, USA, August 2003.
  7. J. Côté and J. de Lafontaine, “Magnetic-only orbit and attitude estimation using the square-root unscented Kalman filter: application to the PROBA-2 spacecraft,” in Proceedings of the Guidance, Navigation, and Control Conference and Exhibit (AIAA '08), Honolulu, Hawaii, USA, August 2008.
  8. R. van der Merwe and E. Wan, “The square-root unscented Kalman filter for state and parameter-estimation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01), vol. 6, pp. 3461–3464, Salt Lake City, Utah, USA, May 2001.
  9. S. J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in Proceedings of the American Control Conference (ACC '02), vol. 2, pp. 887–892, Anchorage, Alaska, USA, May 2002.
  10. S. J. Julier, “The spherical simplex unscented transformation,” in Proceedings of the American Control Conference (ACC '03), vol. 3, pp. 2430–2434, Denver, Colo, USA, June 2003.
  11. J. G. Castrejôn-Lozano, L. R. Garca Carrillo, A. Dzul, and R. Lozano, “Spherical simplex sigma-point Kalman filters: a comparison in the inertial navigation of a terrestrial vehicle,” in Proceedings of the American Control Conference (ACC '08), pp. 3536–3541, 2008. View at Publisher · View at Google Scholar
  12. J.-F. Lévesque, “Second-order simplex sigma points for nonlinear estimation,” in Proceedings of the Guidance, Navigation, and Control Conference (AIAA '06), vol. 2, pp. 819–830, Keystone, Colo, USA, August 2006.
  13. S. J. Julier, “The scaled unscented transformation,” in Proceedings of the American Control Conference (ACC '02), vol. 6, pp. 4555–4559, Anchorage, Alaska, USA, May 2002.
  14. W.-C. Li, P. Wei, and X.-C. Xiao, “A novel simplex unscented transform and filter,” in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '07), pp. 926–931, Sydney, Australia, 2007. View at Publisher · View at Google Scholar
  15. I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  16. M. R. Morelande and B. Ristic, “Smoothed state estimation for nonlinear Markovian switching systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 4, pp. 1309–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. L. Markley, “Attitude error representations for Kalman filtering,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 311–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Singla, A new attitude determination approach using split field of view star camera, M.S. thesis, Texas A&M University, College Station, Tex, USA, 2002.
  19. R. L. Farrenkopf, “Analytic steady-state accuracy solutions for two common spacecraft attitude estimators,” Jounal of Guidance and Control, vol. 1, no. 4, pp. 282–284, 1978. View at Google Scholar