Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2009, Article ID 513023, 9 pages
http://dx.doi.org/10.1155/2009/513023
Research Article

Dissipation Effects in the Ratchetlike Fermi Acceleration

Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil

Received 23 April 2009; Accepted 29 June 2009

Academic Editor: Edson Denis Leonel

Copyright © 2009 Cesar Manchein and Marcus W. Beims. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Lieberman and A. J. Lichtenberg, “Stochastic and adiabatic behavior of particles accelerated by periodic forces,” Physical Review A, vol. 5, no. 4, pp. 1852–1866, 1972. View at Publisher · View at Google Scholar
  2. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1992. View at MathSciNet
  3. E. D. Leonel, J. K. L. da Silva, and S. O. Kamphorst, “On the dynamical properties of a Fermi accelerator model,” Physica A, vol. 331, no. 3-4, pp. 435–447, 2004. View at Publisher · View at Google Scholar
  4. E. D. Leonel, P. V. E. McClintock, and J. K. L. da Silva, “Fermi-Ulam Accelerator Model under Scaling Analysis,” Physical Review Letters, vol. 93, Article ID 014101, 2004. View at Google Scholar
  5. E. D. Leonel and P. V. E. McClintock, “A crisis in the dissipative Fermi accelerator model,” Journal of Physics A, vol. 38, no. 23, pp. 425–430, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. R. E. de Carvalho, F. C. Souza, and E. D. Leonel, “Fermi acceleration on the annular billiard,” Physical Review E, vol. 73, no. 6, Article ID 066229, 10 pages, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  7. A. K. Karlis, P. K. Papachristou, F. K. Diakonos, V. Constantoudis, and P. Schmelcher, “Hyperacceleration in a stochastic Fermi-Ulam model,” Physical Review Letters, vol. 97, no. 19, Article ID 194102, 4 pages, 2006. View at Publisher · View at Google Scholar
  8. A. K. Karlis, P. K. Papachristou, F. K. Diakonos, V. Constantoudis, and P. Schmelcher, “Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model,” Physical Review E, vol. 76, no. 1, Article ID 016214, 17 pages, 2007. View at Publisher · View at Google Scholar
  9. A. Steane, P. Szriftgiser, P. Desbiolles, and J. Dalibard, “Phase modulation of atomic de Broglie waves,” Physical Review Letters, vol. 74, no. 25, pp. 4972–4975, 1995. View at Publisher · View at Google Scholar
  10. F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, “Fermi accelerator in atom optics,” Physical Review A, vol. 58, pp. 4779–4783, 1998. View at Publisher · View at Google Scholar
  11. F. Saif, “Classical and quantum chaos in atom optics,” Physics Reports, vol. 419, no. 6, pp. 207–258, 2005. View at Publisher · View at Google Scholar
  12. A. V. Milovanov and L. M. Zeleny, ““Strange” Fermi processes and power-law nonthermal tails from a self-consistent fractional kinetic equation,” Physical Review E, vol. 64, no. 5, Article ID 052101, 4 pages, 2001. View at Publisher · View at Google Scholar
  13. G. Michalek, M. Ostrowski, and R. Schickeiser, “Cosmic-Ray Momentum Diffusion in Magnetosonic versus Alfvénic Turbulent Field,” Solar Physics, vol. 184, p. 339, 2001, http://www.springerlink.com. View at Google Scholar
  14. A. Veltri and V. Carbone, “Radiative intermittent events during Fermi's stochastic acceleration,” Physical Review Letters, vol. 92, no. 14, Article ID 143901, 4 pages, 2004. View at Publisher · View at Google Scholar
  15. K. Kobayakawa, Y. S. Honda, and T. Tamura, “Acceleration by oblique shocks at supernova remnants and cosmic ray spectra around the knee region,” Physical Review D, vol. 66, no. 8, Article ID 083004, 11 pages, 2002. View at Publisher · View at Google Scholar
  16. M. A. Malkov, “Ion leakage from quasiparallel collisionless shocks: implicationsfor injection and shock dissipation,” Physical Review E, vol. 58, no. 4, pp. 4911–4928, 1998. View at Publisher · View at Google Scholar
  17. E. Fermi, “On the origin of the Cosmic Radiation,” Physical Review, vol. 75, p. 1169, 1949. View at Google Scholar
  18. S. M. Ulam, “On some statistical properties of dynamical systems,” in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 3, pp. 315–320, University of California Press, Berkeley, Calif, USA, 1961. View at Zentralblatt MATH · View at MathSciNet
  19. L. D. Pustylńikov, “Stable and oscillating motions in nonautonomous dynamical systems. II,” Trudy Moskovskogo Matematičeskogo Obščestva, vol. 34, pp. 3–103, 1977, English translation in Transactions of the Moscow Mathematical Society, vol. 2, p. 1, 1978. View at Google Scholar · View at MathSciNet
  20. C. Manchein and M. W. Beims, “Ratchetlike pulse controlling the Fermi deceleration and hyperacceleration,” International Journal of Computational Science and Engineering, vol. 1, p. 99, 2009. View at Google Scholar
  21. Y.-C. Lai and C. Grebogi, “Complexity in Hamiltonian-driven dissipative chaotic dynamical systems,” Physical Review E, vol. 54, p. 4667, 1996. View at Google Scholar
  22. P. C. Rech, M. W. Beims, and J. A. C. Gallas, “Basin size evolution between dissipative and conservative limits,” Physical Review E, vol. 71, no. 1, Article ID 17207, 4 pages, 2005. View at Publisher · View at Google Scholar
  23. C. Manchein, J. Rosa, and M. W. Beims, “Chaotic motion at the emergence of the time averaged energy decay,” Physica D, vol. 238, no. 16, pp. 1688–1694, 2009. View at Publisher · View at Google Scholar
  24. U. Feudel, C. Grebogi, B. R. Hunt, and J. A. Yorke, “Map with more than 100 coexisting low-period periodic attractors,” Physical Review E, vol. 54, no. 1, pp. 71–81, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  25. R. E. de Carvalho and C. V. Abud, “Dissipation as a mechanism of energy gain,” Physical Review E, vol. 77, Article ID 036204, 2008. View at Google Scholar
  26. D. F. Tavares, “A simplified Fermi accelerator model under quadratic frictional force,” Brazilian Journal of Physics, vol. 38, no. 1, p. 58, 2008. View at Publisher · View at Google Scholar
  27. E. D. Leonel and R. E. de Carvalho, “A family of crisis in a dissipative Fermi accelerator model,” Physics Letters A, vol. 364, no. 6, pp. 475–479, 2007. View at Publisher · View at Google Scholar
  28. A. L. P. Livorati, D. G. Ladeira, and E. D. Leonel, “Scaling investigation of Fermi acceleration on a dissipative bouncer model,” Physical Review E, vol. 78, no. 5, Article ID 056205, 12 pages, 2008. View at Publisher · View at Google Scholar
  29. D. G. Ladeira and E. D. Leonel, “Dynamical properties of a dissipative hybrid Fermi-Ulam-bouncer model,” Chaos, vol. 17, no. 1, Article ID 013119, 7 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. D. Cole, S. Bending, S. Savellév, A. Grigorenko, T. Tamegai, and F. Nori, “Ratchet without spatial asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric drives,” Nature Materials, vol. 5, pp. 305–311, 2006. View at Publisher · View at Google Scholar
  31. A. Loskutov, “Dynamical chaos: systems of classical mechanics,” Physics-Uspekhi, vol. 50, no. 9, pp. 939–964, 2007. View at Publisher · View at Google Scholar
  32. C. Manchein and M. W. Beims, “Controling the Fermi acceleration by strong dissipation,” in preparation.
  33. R. Klages, Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics, vol. 24 of Advanced Series in Nonlinear Dynamics, World Scientific, River Edge, NJ, USA, 2007. View at Zentralblatt MATH · View at MathSciNet
  34. G. Casati, C. Mejía-Monasterio, and T. Prosen, “Increasing thermoelectric efficiency: a dynamical systems approach,” Physical Review Letters, vol. 101, no. 1, Article ID 016601, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH