Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2009, Article ID 610574, 13 pages
http://dx.doi.org/10.1155/2009/610574
Research Article

Intermittent Behavior and Synchronization of Two Coupled Noisy Driven Oscillators

1Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Paraná, Brazil
2Setor Escola Técnica, Universidade Federal do Paraná, UNED Paranaguá, 83215-750 Paranaguá, Paraná, Brazil

Received 12 September 2008; Revised 18 November 2008; Accepted 23 February 2009

Academic Editor: Elbert E. Neher Macau

Copyright © 2009 Ângela Maria dos Santos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Pomeau and P. Manneville, “Intermittent transition to turbulence in dissipative dynamical systems,” Communications in Mathematical Physics, vol. 74, no. 2, pp. 189–197, 1980. View at Publisher · View at Google Scholar · View at MathSciNet
  2. J. E. Hirsch, B. A. Huberman, and D. J. Scalapino, “Theory of intermittency,” Physical Review A, vol. 25, no. 1, pp. 519–532, 1982. View at Publisher · View at Google Scholar
  3. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, vol. 12 of Cambridge Nonlinear Science Series, Cambridge University Press, Cambridge, UK, 2001. View at Zentralblatt MATH · View at MathSciNet
  4. J. F. Heagy, T. L. Carroll, and L. M. Pecora, “Synchronous chaos in coupled oscillator systems,” Physical Review E, vol. 50, no. 3, pp. 1874–1885, 1994. View at Publisher · View at Google Scholar
  5. R. Roy and K. S. Thornburg, Jr., “Experimental synchronization of chaotic lasers,” Physical Review Letters, vol. 72, no. 13, pp. 2009–2012, 1994. View at Publisher · View at Google Scholar
  6. L. Glass, “Synchronization and rhythmic processes in physiology,” Nature, vol. 410, no. 6825, pp. 277–284, 2001. View at Publisher · View at Google Scholar · View at PubMed
  7. J. Guckenheimer, “Dynamics of the van der Pol equation,” IEEE Transactions on Circuits and Systems, vol. 27, no. 11, pp. 983–989, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. B. van der Pol, “Forced oscillationsin a circuit with non-linear resistance,” Philosophical Magazine, vol. 3, pp. 65–80, 1927. View at Google Scholar
  9. J. C. Biswas and V. Mitra, “Negative resistance in Zener diodes,” Solid-State Electronics, vol. 21, no. 8, pp. 1053–1055, 1978. View at Publisher · View at Google Scholar
  10. B. van der Pol and J. van der Mark, “The heartbeat considered as a relaxation oscillation, and an electrical model of the heart,” Philosophical Magazine, vol. 6, pp. 763–775, 1928. View at Google Scholar
  11. O. Kongas, R. von Hertzen, and J. Engelbrecht, “Bifurcation structure of a periodically driven nerve pulse equation modelling cardiac conduction,” Chaos, Solitons & Fractals, vol. 10, no. 1, pp. 119–136, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. M. Kontorovich, Nonlinear Oscillations in Radio Engineering, Mir, Moscow, Russia, 1976.
  13. A. M. dos Santos, S. R. Lopes, and R. L. Viana, “Rhythm synchronization and chaotic modulation of coupled van der Pol oscillators in a model for the heartbeat,” Physica A, vol. 338, no. 3-4, pp. 335–355, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  14. T. Kapitaniak, Chaos in Systems with Noise, World Scientific, Singapore, 2nd edition, 1990. View at Zentralblatt MATH
  15. P. Hagedorn, Nichtlineare Schwingungen, Akademiscbe Verlagsellschaft, Wiesbaden, Germany, 1978.
  16. A. C. Hindmarch, “ODEPACK: a systematized collection of ODE solvers,” in Scientific Computing, R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, Eds., vol. 1 of IMACS Transactions on Scientific Computation, pp. 55–64, North-Holland, Amsterdam, The Netherlands, 1983. View at Google Scholar
  17. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Physics Report, vol. 366, no. 1-2, pp. 1–101, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. P. S. Landa, Regular and Chaotic Oscillations, Foundations of Engineering Mechanics, Springer, Berlin, Germany, 2001. View at Zentralblatt MATH
  19. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “From phase to lag synchronization in coupled chaotic oscillators,” Physical Review Letters, vol. 78, no. 22, pp. 4193–4196, 1997. View at Publisher · View at Google Scholar
  20. S. Taherion and Y.-C. Lai, “Observability of lag synchronization of coupled chaotic oscillators,” Physical Review E, vol. 59, no. 6, pp. R6247–R6250, 1999. View at Publisher · View at Google Scholar
  21. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, Germany, 2000.
  22. A. M. dos Santos, S. R. Lopes, and R. L. Viana, “Synchronization regimes for two coupled noisy Liénard-type driven oscillators,” Chaos, Solitons & Fractals, vol. 36, no. 4, pp. 901–910, 2008. View at Publisher · View at Google Scholar
  23. Z. Zheng, G. Hu, and B. Hu, “Phase slips and phase synchronization of coupled oscillators,” Physical Review Letters, vol. 81, no. 24, pp. 5318–5321, 1998. View at Publisher · View at Google Scholar
  24. N. Platt, E. A. Spiegel, and C. Tresser, “On-off intermittency: a mechanism for bursting,” Physical Review Letters, vol. 70, no. 3, pp. 279–282, 1993. View at Publisher · View at Google Scholar
  25. R. L. Viana, C. Grebogi, S. E. de S. Pinto, S. R. Lopes, A. M. Batista, and J. Kurths, “Validity of numerical trajectories in the synchronization transition of complex systems,” Physical Review E, vol. 68, no. 6, Article ID 067204, 4 pages, 2003. View at Publisher · View at Google Scholar
  26. R. L. Viana, C. Grebogi, S. E. de S.pinto, S. R. Lopes, A. M. Batista, and J. Kurths, “Bubbling bifurcation: loss of synchronization and shadowing breakdown in complex systems,” Physica D, vol. 206, no. 1-2, pp. 94–108, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. P. W. Hammer, N. Platt, S. M. Hammel, J. F. Heagy, and B. D. Lee, “Experimental observation of on-off intermittency,” Physical Review Letters, vol. 73, no. 8, pp. 1095–1098, 1994. View at Publisher · View at Google Scholar
  28. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss, “Controlling cardiac chaos,” Science, vol. 257, no. 5074, pp. 1230–1235, 1992. View at Publisher · View at Google Scholar