Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2010, Article ID 123751, 12 pages
http://dx.doi.org/10.1155/2010/123751
Research Article

Stabilizability and Disturbance Rejection with State-Derivative Feedback

Departamento de Engenharia Elétrica, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista (UNESP), 15385-000 Ilha Solteira, SP, Brazil

Received 23 September 2010; Accepted 9 December 2010

Academic Editor: Fernando Lobo Pereira

Copyright © 2010 Manoel R. Moreira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Ogata, Modern Control Engineering, Prentice Hall, New York, NY, USA, 4th edition, 2002.
  2. F. L. Lewis and V. L. Syrmos, “A geometric theory for derivative feedback,” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1111–1116, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. T. H.S. Abdelaziz and M. Valášek, “Pole-placement for SISO linear systems by state-derivative feedback,” IEE Proceedings: Control Theory and Applications, vol. 151, no. 4, pp. 377–385, 2004. View at Publisher · View at Google Scholar
  4. Y. F. Duan, Y. Q. Ni, and J. M. Ko, “State-derivative feedback control of cable vibration using semiactive magnetorheological dampers,” Computer-Aided Civil and Infrastructure Engineering, vol. 20, no. 6, pp. 431–449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S.-K. Kwak, G. Washington, and R. K. Yedavalli, “Acceleration-based vibration control of distributed parameter systems using the “reciprocal state-space framework”,” Journal of Sound and Vibration, vol. 251, no. 3, pp. 543–557, 2002. View at Publisher · View at Google Scholar
  6. R. Cardim, M. C. M. Teixeira, E. Assunção, and M. Covacic, “Design of state-derivative feedback controllers using a state feedback control design,” in Proceedings of the 3rd IFAC Symposium on System, Structure and Control, vol. 1, pp. 135–141, Iguassu Falls, Brazil, 2007.
  7. J. M. Araújo, A. C. Castro, and E. T. F. Santos, “Alocação de Pólos em Sistemas Lineares Invariantes no Tempo Utilizando Realimentação da Derivada de Estados e a Equação de Lyapunov,” Controle y Automacao, vol. 20, no. 3, pp. 263–270, 2009 (Portuguese). View at Google Scholar · View at Scopus
  8. T. H. S. Abdelaziz, “Optimal control using derivative feedback for linear systems,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 224, no. 2, pp. 185–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. H. S. Abdelaziz, “Robust pole assignment for linear time-invariant systems using state-derivative feedback,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 223, no. 2, pp. 187–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. H. S. Abdelaziz, “Pole assignment by state-derivative feedback for single-input linear systems,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 221, no. 7, pp. 991–1000, 2007. View at Google Scholar
  11. T. H. S. Abdelaziz and M. Valášek, “Direct algorithm for pole placement by state-derivative feedback for multi-input linear systems—nonsingular case,” Kybernetika, vol. 41, no. 5, pp. 637–660, 2005. View at Google Scholar
  12. T. H. S. Abdelaziz and M. Valášek, “Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems,” Kybernetika, vol. 41, no. 5, pp. 661–676, 2005. View at Google Scholar
  13. F. A. Faria, E. Assunção, M. C. M. Teixeira, R. Cardim, and N. A. P. da Silva, “Robust state-derivative pole placement LMI-based designs for linear systems,” International Journal of Control, vol. 82, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. R. Cardim, M. C. M. Teixeira, F. Faria, and E. Assunção, “LMI-based digital redesign of linear time-invariant systems with state-derivative feedback,” in Proceedings of IEEE Multi-Conference on Systems and Control, vol. 1, pp. 745–749, Saint Petersburg, Russia, 2009.
  15. S. K. Kwak, G. Washington, and R. K. Yedavalli, “Acceleration feedback-based active and passive vibration control of landing gear components,” Journal of Aerospace Engineering, vol. 15, no. 1, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Reithmeier and G. Leitmann, “Robust vibration control of dynamical systems based on the derivative of the state,” Archive of Applied Mechanics, vol. 72, no. 11-12, pp. 856–864, 2003. View at Google Scholar · View at Scopus
  17. E. Assunção, M. C. M. Teixeira, F. A. Faria, N. A. P. da Silva, and R. Cardim, “Robust state-derivative feedback LMI-based designs for multivariable linear systems,” International Journal of Control, vol. 80, no. 8, pp. 1260–1270, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. F. A. Faria, E. Assunção, M. C. M. Teixeira, and R. Cardim, “Robust state-derivative feedback LMI-based designs for linear descriptor systems,” Mathematical Problems in Engineering, vol. 2010, Article ID 927362, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. F. A. Faria, E. Assunção, and M. C. M. Teixeira, “Realimentação da derivada dos estados em sistemas multivariáveis lineares usando LMIs,” Controle y Automacao, vol. 20, no. 1, pp. 83–93, 2009. View at Google Scholar · View at Scopus
  20. J. M. Araújo, A. C. Castro, F. G. S. Silva, E. T. F. Santos, and C. E. T. Dórea, “Comparative study on state feedback and state-derivative feedback in linear time invariant systems,” in Proceedings of the 3rd IFAC Symposium on System, Structure and Control, vol. 3, Iguassu Falls, Brazil, 2007, article 119.
  21. M. R. Moreira, E. I. M. Junior, T. T. Esteves et al., “Estabilidade e rejeição de distúrbios com realimentação da derivada do vetor de estados,” in XVIII Congresso Brasileiro de Automática, pp. 5230–5233, Bonito-MS, Brazil, 2010.
  22. W. Michiels, T. Vyhlídal, H. Huijberts, and H. Nijmeijer, “Stabilizability and stability robustness of state derivative feedback controllers,” SIAM Journal on Control and Optimization, vol. 47, no. 6, pp. 3100–3117, 2008. View at Publisher · View at Google Scholar
  23. C. T. Chen, Linear System Theory and Design, Oxford University Press, New York, NY, USA, 2nd edition, 1999.
  24. R. Cardim, M. C. M. Teixeira, E. Assunção, and F. A. Faria, “Control designs for linear systems using state-derivative feedback,” in Systems, Structure and Control, P. Husek, Ed., pp. 1–28, In-Teh, 2008. View at Google Scholar