Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2010, Article ID 143582, 9 pages
http://dx.doi.org/10.1155/2010/143582
Research Article

On the Integration Schemes of Retrieving Impulse Response Functions from Transfer Functions

1College of Science, China Agricultural University, P.B. 74, East Campus, Beijing 100083, China
2The First Affiliated Hospital of China People's Liberation, Army General Hospital, Beijing 100037, China

Received 7 February 2010; Accepted 28 December 2010

Academic Editor: Moran Wang

Copyright © 2010 Kui Fu Chen and Yan Feng Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Humar, A. Bagchi, and H. Xia, “Frequency domain analysis of soil-structure interaction,” Computers & Structures, vol. 66, no. 2-3, pp. 337–351, 1998. View at Google Scholar · View at Scopus
  2. D. Polyzos, K. G. Tsepoura, and D. E. Beskos, “Transient dynamic analysis of 3-D gradient elastic solids by BEM,” Computers & Structures, vol. 83, no. 10-11, pp. 783–792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yan, C. Zhang, and F. Jin, “A coupling procedure of FE and SBFE for soil-structure interaction in the time domain,” International Journal for Numerical Methods in Engineering, vol. 59, no. 11, pp. 1453–1471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. N. A. Dumont and R. De Oliveira, “From frequency-dependent mass and stiffness matrices to the dynamic response of elastic systems,” International Journal of Solids and Structures, vol. 38, no. 10-13, pp. 1813–1830, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. C. Genes and S. Kocak, “Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model,” International Journal for Numerical Methods in Engineering, vol. 62, no. 6, pp. 798–823, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. W. Liu and J. H. Huang, “Transient dynamic responses of a cracked solid subjected to in-plane loadings,” International Journal of Solids and Structures, vol. 40, no. 18, pp. 4925–4940, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. K. F. Chen and S. W. Zhang, “A semi-analytic approach to retrieve the unitary impulse response function,” Earthquake Engineering & Structural Dynamics, vol. 36, no. 3, pp. 429–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. K. Kim and C. B. Yun, “Earthquake response analysis in the time domain for 2D soil-structure systems using analytical frequency-dependent infinite elements,” International Journal for Numerical Methods in Engineering, vol. 58, no. 12, pp. 1837–1855, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Inaudi and J. M. Kelly, “Linear hysteretic damping and the Hilbert transform,” Journal of Engineering Mechanics, vol. 121, no. 5, pp. 626–632, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Makris and J. Zhang, “Time-domain viscoelastic analysis of earth structures,” Earthquake Engineering & Structural Dynamics, vol. 29, no. 6, pp. 745–768, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. H. C. Tsai and T. C. Lee, “Dynamic analysis of linear and bilinear oscillators with rate-independent damping,” Computers & Structures, vol. 80, no. 2, pp. 155–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. F. Chen and S. W. Zhang, “On the impulse response precursor of an ideal linear hysteretic damper,” Journal of Sound and Vibration, vol. 312, no. 4-5, pp. 576–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. V. Sushilov and R. S. C. Cobbold, “Wave propagation in media whose attenuation is proportional to frequency,” Wave Motion, vol. 38, no. 3, pp. 207–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Schanz, “A boundary element formulation in time domain for viscoelastic solids,” Communications in Numerical Methods in Engineering, vol. 15, no. 11, pp. 799–809, 1999. View at Google Scholar · View at Scopus
  15. A. S. Omar and A. H. Kamel, “Frequency- and time-domain expressions for transfer functions and impulse responses related to the waveguide propagation,” IEE Proceedings: Microwaves, Antennas and Propagation, vol. 151, no. 1, pp. 21–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Suk and E. J. Rothwell, “Transient analysis of TE-plane wave reflection from a layered medium,” Journal of Electromagnetic Waves and Applications, vol. 16, no. 2, pp. 281–297, 2002. View at Google Scholar · View at Scopus
  17. B. Gatmiri and K. van Nguyen, “Time 2D fundamental solution for saturated porous media with incompressible fluid,” Communications in Numerical Methods in Engineering, vol. 21, no. 3, pp. 119–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Elzein, “A three-dimensional boundary element/laplace transform solution of uncoupled transient thermo-elasticity in non-homogeneour rock media,” Communications in Numerical Methods in Engineering, vol. 17, no. 9, pp. 639–646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. K. E. Barrett and A. C. Gotts, “Finite element analysis of a compressible dynamic viscoelastic sphere using FFT,” Computers & Structures, vol. 80, no. 20-21, pp. 1615–1625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Y. Wang, K. Y. Lam, and G. R. Liu, “Strip element method for the transient analysis of symmetric laminated plates,” International Journal of Solids and Structures, vol. 38, no. 2, pp. 241–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Maffucci and G. Miano, “An accurate time-domain model of transmission lines with frequency-dependent parameters,” International Journal of Circuit Theory and Applications, vol. 28, no. 3, pp. 263–280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. F. V. Filho, A. M. Claret, and F. S. Barbosa, “Frequency and time domain dynamic structural analysis: convergence and causality,” Computers & Structures, vol. 80, no. 18-19, pp. 1503–1509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Song and J. P. Wolf, “Scaled boundary finite-element method—a primer: solution procedures,” Computers & Structures, vol. 78, no. 1, pp. 211–225, 2000. View at Publisher · View at Google Scholar · View at Scopus