Abstract

The polyconvolution with the weight function 𝛾 of three functions 𝑓,𝑔, and for the integral transforms Fourier sine (𝐹𝑠), Fourier cosine (𝐹𝑐), and Kontorovich-Lebedev (𝐾𝑖𝑦), which is denoted by 𝛾(𝑓,𝑔,)(x), has been constructed. This polyconvolution satisfies the following factorization property 𝐹𝑐(𝛾(𝑓,𝑔,))(𝑦)=sin0𝑥000𝑎0𝑦(𝐹𝑠𝑓)(𝑦)(𝐹𝑐𝑔)(𝑦)(𝐾𝑖𝑦)(𝑦), for all 𝑦>0. The relation of this polyconvolution to the Fourier convolution and the Fourier cosine convolution has been obtained. Also, the relations between the polyconvolution product and others convolution product have been established. In application, we consider a class of integral equations with Toeplitz plus Hankel kernel whose solution in closed form can be obtained with the help of the new polyconvolution. An application on solving systems of integral equations is also obtained.

1. Introduction

The convolution of two functions 𝑓 and 𝑔 for the Fourier transform is well known [1] 𝑓𝐹𝑔1(𝑥)=2𝜋𝑓(𝑥𝑦)𝑔(𝑦)𝑑𝑦,𝑥.(1.1) This convolution has the factorization equality as below 𝐹𝑓𝐹𝑔(𝑦)=(𝐹𝑓)(𝑦)(𝐹𝑔)(𝑦),𝑦,(1.2) where 𝐹 denotes the Fourier transform 1(𝐹𝑓)(𝑦)=2𝜋𝑓(𝑥)𝑒𝑖𝑥𝑦𝑑𝑥.(1.3) The convolution of 𝑓 and 𝑔 for the Kontorovich-Lebedev integral transform has been studied in [2]𝑓𝐾𝐿𝑔1(𝑥)=2𝑥01exp2𝑥𝑢𝑣+𝑥𝑣𝑢+𝑢𝑣𝑥𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣,𝑥>0,(1.4) for which the following factorization identity holds:𝐾𝑖𝑦𝑓𝐾𝐿𝑔=𝐾𝑖𝑦𝑓𝐾𝑖𝑦𝑔,𝑦>0.(1.5) Here 𝐾𝑖𝑦 is the Kontorovich-Lebedev transform [3] 𝐾𝑖𝑥[𝑓]=0𝐾𝑖𝑥(𝑡)𝑓(𝑡)𝑑𝑡,(1.6) and 𝐾𝑖𝑥(𝑡) is the Macdonald function [4].

The convolution of two functions 𝑓 and 𝑔 for the Fourier cosine is of the form [1]𝑓1𝑔1(𝑥)=2𝜋0𝑔||||𝑓(𝑦)𝑥𝑦+𝑔(𝑥+𝑦)𝑑𝑦,𝑥>0,(1.7) which satisfied the following factorization equality:𝐹𝑐𝑓1𝑔𝐹(𝑦)=𝑐𝑓𝐹(𝑦)𝑐𝑔(𝑦),𝑦>0.(1.8) Here the Fourier cosine transform is of the form 𝐹𝑐𝑓(𝑦)=2𝜋0cos𝑦𝑥𝑓(𝑥)𝑑𝑥,𝑦>0.(1.9) The convolution with a weight function 𝛾(𝑥)=sin𝑥 of two functions 𝑓 and 𝑔 for the Fourier sine transform has been introduced in [5, 6]𝑓𝛾1𝑔(𝑥)=22𝜋0+𝑓||||||||||||(𝑦)sign(𝑥+𝑦1)𝑔𝑥+𝑦1+sign(𝑥𝑦+1)𝑔𝑥𝑦+1𝑔(𝑥+𝑦+1)sign(𝑥𝑦1)𝑔𝑥𝑦1𝑑𝑦,𝑥>0,(1.10) and the following factorization identity holds:𝐹𝑠𝑓𝛾𝐹𝑔(𝑦)=sin𝑦𝑠𝑓𝐹(𝑦)𝑠𝑔(𝑦),𝑦>0.(1.11) Here the Fourier sine is of the form 𝐹𝑠𝑓(𝑦)=2𝜋0sin𝑦𝑥𝑓(𝑥)𝑑𝑥,𝑦>0.(1.12) The generalized convolution of two functions 𝑓 and 𝑔 for the Fourier sine and Fourier cosine transforms has been studied in [1]𝑓2𝑔1(𝑥)=2𝜋0[]𝑓(𝑢)𝑔(|𝑥𝑢|)𝑔(𝑥+𝑢)𝑑𝑢,𝑥>0,(1.13) and proved the following factorization identity [1]:𝐹𝑠𝑓2𝑔𝐹(𝑦)=𝑠𝑓𝐹(𝑦)𝑐𝑔(𝑦),𝑦>0.(1.14) The generalized convolution of two functions 𝑓 and 𝑔 for the Fourier cosine and the Fourier sine transforms is defined by [7]𝑓3𝑔1(𝑥)=2𝜋0𝑓(𝑢)sign(𝑢𝑥)𝑔(|𝑢𝑥|)+𝑔(𝑢+𝑥)𝑑𝑢,𝑥>0.(1.15) For this generalized convolution, the following factorization equality holds:𝐹𝑐𝑓3𝑔𝐹(𝑦)=𝑠𝑓𝐹(𝑦)𝑠𝑔(𝑦),𝑦>0.(1.16) The generalized convolution with the weight function 𝛾(𝑥)=sin𝑥 for the Fourier cosine and the Fourier sine transforms of 𝑓 and 𝑔 has been introduced in [8]𝑓𝛾1𝑔1(𝑥)=22𝜋0𝑔||||||||||||𝑓(𝑢)𝑥+𝑢1+𝑔𝑥𝑢+1𝑔(𝑥+𝑢+1)𝑔𝑥𝑢1𝑑𝑢,𝑥>0.(1.17) It satisfies the factorization property 𝐹𝑐𝑓𝛾1𝑔𝐹(𝑦)=sin𝑦𝑠𝑓𝐹(𝑦)𝑐𝑔(𝑦),𝑦>0.(1.18) The generalized convolution with the weight function 𝛾(𝑥)=sin𝑥 of 𝑓 and 𝑔 for the Fourier sine and Fourier cosine has been studied in [9]𝑓𝛾2𝑔1(𝑥)=22𝜋0𝑔||||||||||||𝑓(𝑢)𝑥+𝑢1+𝑔𝑥𝑢1𝑔(𝑥+𝑢+1)𝑔𝑥𝑢+1𝑑𝑢,𝑥>0,(1.19) and satisfies the following factorization identity:𝐹𝑠𝑓𝛾2𝑔𝐹(𝑦)=sin𝑦𝑐𝑓𝐹(𝑦)𝑐𝑔(𝑦),𝑦>0.(1.20) Recently, the following generalized convolutions for Fourier cosine, Kontorovich-Lebedev and Fourier sine, Kontorovich-Lebedev are studied in [10] (f. 21)(𝑓𝑔){𝑐𝑠}(1𝑥)=2𝜋𝑥2+𝑒𝑓(𝑢)𝑔(𝑣)𝑥cosh(𝑢𝑣)±𝑒𝑥cosh(𝑢+𝑣)𝑑𝑢𝑑𝑣,𝑥>0.(1.21) The respective factorization equalities are [10] 𝐹{𝑐𝑠}(𝑓𝑔){𝑐𝑠}𝐹(𝑦)={𝑐𝑠}𝑓(𝑦)𝐾𝑖𝑦[𝑔],𝑥>0,𝑓𝐿1+𝐿𝑝+,𝑔𝐿𝑝0,𝛽,𝑝>1,(1.22) where 𝐿𝑝0,𝛽=𝑓0||||𝑓(𝑡)𝑝𝐾0(𝛽𝑡)𝑑𝑡<,0<𝛽1.(1.23)

In 1997, Kakichev introduced a constructive method for defining a polyconvolution with a weight function 𝛾 of functions 𝑓1,𝑓2,,𝑓𝑛 for the integral transforms 𝐾,𝐾1,𝐾2,,𝐾𝑛, which are denoted by 𝛾(𝑓1,𝑓2,,𝑓𝑛)(𝑥), such that the following factorization property holds [11]:𝐾𝛾𝑓1,𝑓2,,𝑓𝑛(𝑦)=𝛾(𝑦)𝑛𝑖=1𝐾𝑖𝑓𝑖(𝑦),𝑛3.(1.24) Polyconvolutions for the Hilbert, Stieltjes, Fourier cosine, and Fourier sine integral transforms have been studied in [12].

The polyconvolution of 𝑓, 𝑔, and for the Fourier cosine and the Fourier sine transforms has the form [13]1(𝑓,𝑔,)(𝑥)=2𝜋0[]𝑓(𝑢)𝑔(𝑣)(|𝑥+𝑢𝑣|)+(𝑥𝑢+𝑣)(|𝑥𝑢𝑣|)(𝑥+𝑢+𝑣)𝑑𝑢𝑑𝑣,𝑥>0,(1.25) which satisfies the following factorization property:𝐹𝑐𝐹((𝑓,𝑔,))(𝑦)=𝑠𝑓𝐹(𝑦)𝑠𝑔𝐹(𝑦)𝑐(𝑦),𝑦>0.(1.26) In recent years, many sciences were interested in the theory of convolution for the integral transforms and gave several interesting application (see [3, 1421]), specially, the integral equations with the Toeplitz plus Hankel kernel [2224]𝑓(𝑥)+0𝑘1(𝑥+𝑦)+𝑘2(𝑥𝑦)𝑓(𝑦)𝑑𝑦=𝑔(𝑥),𝑥>0,(1.27) where 𝑘1,𝑘2, and 𝑔 are known functions, and 𝑓 is an unknown function. Many partial cases of this equation can be solved in closed form with the help of the convolutions and generalized convolutions. In this paper, we construct and investigate the polyconvolution for the Fourier sine, Fourier cosine, and the Kontorovich-Lebedev transforms. Several properties of this new polyconvolution and its application on solving integral equation with Toeplitz plus Hankel equation and systems of integral equations are obtained.

2. Polyconvolution

Definition 2.1. The polyconvolution with the weight function 𝛾=sin𝑥 of functions 𝑓, 𝑔, and for the Fourier cosine, Fourier sine, and the Kontorovich-Lebedev integral transforms is defined as follows: 𝛾(𝑓,𝑔,)(𝑥)=0𝜃(𝑥,𝑢,𝑣,𝑤)𝑓(𝑢)𝑔(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤,(2.1) where 1𝜃(𝑥,𝑢,𝑣,𝑤)=4𝑒2𝜋𝑤cosh(𝑥+𝑣+𝑢1)+𝑒𝑤cosh(𝑥+𝑣𝑢+1)+𝑒𝑤cosh(𝑥𝑣+𝑢1)+𝑒𝑤cosh(𝑥𝑣𝑢+1)𝑒𝑤cosh(𝑥+𝑣+𝑢+1)𝑒𝑤cosh(𝑥+𝑣𝑢1)𝑒𝑤cosh(𝑥𝑣+𝑢+1)𝑒𝑤cosh(𝑥𝑣𝑢1).(2.2)

Theorem 2.2. Let 𝑓 and 𝑔 be functions in 𝐿1(+), and let be a function in 𝐿1(1/𝑤,+); then the polyconvolution (2.1) belongs to 𝐿1(+) and satisfies the following factorization equality: 𝐹𝑐𝛾𝐹(𝑓,𝑔,)(𝑦)=sin𝑦𝑠𝑓𝐹(𝑦)𝑐𝑔𝐾(𝑦)𝑖𝑦,𝑦>0.(2.3)

Proof. Since |𝑒𝑤cosh(𝑥+𝑢+𝑣1)𝑒𝑤cosh(𝑥+𝑢+𝑣1)|1/𝑤 for sufficient large 𝑤>0, we have |||𝛾|||1(𝑓,𝑔,)(𝑥)42𝜋0||||||||||||||||1𝑓(𝑢)𝑔(𝑣)(𝑤)𝜃(𝑥,𝑢,𝑣,𝑤)𝑑𝑢𝑑𝑣𝑑𝑤2𝜋0||||𝑓(𝑢)𝑑𝑢0||||𝑔(𝑣)𝑑𝑣01𝑤||||(𝑤)𝑑𝑤<+.(2.4) On the other hand, note that cosh(𝑥+𝑢+𝑣1)(𝑥+𝑢+𝑣1)2/2; we have 𝑒𝑤cosh(𝑥+𝑢+𝑣1)𝑒𝑤((𝑥+𝑢+𝑣1)2/2),𝑤>0.(2.5) Using formula 3.321.3, page 321, in [4], we have 0𝑒𝑤cosh(𝑥+𝑢+𝑣1)𝑑𝑥2𝑤0𝑒(𝑤/2(𝑥+𝑢+𝑣1))2𝑑𝑤2(𝑥+𝑢+𝑣1)22𝑤0𝑒𝑠2𝑑𝑠=2𝜋𝑤.(2.6) It shows that 0𝑒𝑤cosh(𝑥+𝑢+𝑣1)||||||||||||𝑓(𝑢)𝑔(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤𝑑𝑥02𝜋𝑤||||||𝑓||||𝑔||(𝑤)(𝑢)(𝑣)𝑑𝑢𝑑𝑣𝑑𝑤2𝜋01𝑤||||(𝑤)𝑑𝑤0||||𝑓(𝑢)𝑑𝑢0||||𝑔(𝑣)𝑑𝑣<+.(2.7) By the same way, we obtain similar estimations for the 7 other terms. Therefore, from formulas (2.1), (2.2), and (2.7), we have 0|||𝛾|||(𝑓,𝑔,)(𝑥)𝑑𝑥<+.(2.8) It shows that the polyconvolution (2.1) belongs to 𝐿1(+). We now prove the factorization equality (2.3). Indeed, we have 𝐹sin𝑦𝑠𝑓𝐹(𝑦)𝑐𝑔𝐾(𝑦)𝑖𝑦=2𝜋0sin𝑦sin(𝑦𝑢)cos(𝑦𝑣)𝐾𝑖𝑦(𝑤)𝑓(𝑢)𝑔(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤.(2.9) Using formula 2, page 130 in [4], we get 𝐹sin𝑦𝑠𝑓𝐹(𝑦)𝑐𝑔𝐾(𝑦)𝑖𝑦=2𝜋0sin𝑦sin(𝑦𝑢)cos(𝑦𝑣)cos(𝑦𝛼)𝑒𝑤cosh𝛼=1𝑓(𝑢)𝑔(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤𝑑𝛼4𝜋0𝑒𝑤cosh𝛼[]cos𝑦(𝑢1+𝑣+𝛼)+cos𝑦(𝑢1𝑣𝛼)+cos𝑦(𝑢1+𝑣𝛼)+cos𝑦(𝑢1𝑣+𝛼)cos𝑦(𝑢+1+𝑣+𝛼)cos𝑦(𝑢+1𝑣𝛼)cos𝑦(𝑢+1+𝑣𝛼)cos𝑦(𝑢+1𝑣+𝛼)×𝑓(𝑢)𝑔(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤𝑑𝛼.(2.10) Interchanging variables, we have 0𝑒𝑤cosh𝛼[]=cos𝑦(𝑢1+𝑣+𝛼)cos𝑦(𝑢+1+𝑣+𝛼)𝑑𝛼0𝑒cos𝑦𝑥𝑤cosh(𝑥𝑢+1𝑣)𝑒𝑤cosh(𝑥𝑢1𝑣)𝑑𝑥.(2.11) Similarly, 0𝑒𝑤cosh𝛼[]=cos𝑦(𝑢1𝑣+𝛼)cos𝑦(𝑢+1𝑣+𝛼)𝑑𝛼0𝑒cos𝑦𝑥𝑤cosh(𝑥𝑢+1+𝑣)𝑒𝑤cosh(𝑥𝑢1+𝑣)𝑑𝑥;0𝑒𝑤cosh𝛼[]=cos𝑦(𝑢1𝑣𝛼)cos𝑦(𝑢+1𝑣𝛼)𝑑𝛼0𝑒cos𝑦𝑥𝑤cosh(𝑥+𝑢1𝑣)𝑒𝑤cosh(𝑥+𝑢+1𝑣)𝑑𝑥;0𝑒𝑤cosh𝛼[]=cos𝑦(𝑢1+𝑣𝛼)cos𝑦(𝑢+1+𝑣𝛼)𝑑𝛼0𝑒cos𝑦𝑥𝑤cosh(𝑥+𝑢1+𝑣)𝑒𝑤cosh(𝑥+𝑢+1+𝑣)𝑑𝑥.(2.12) From fomulae (2.10)–( 2.8), we have 𝐹sin𝑦𝑠𝑓𝐹(𝑦)𝑐𝑔𝐾(𝑦)𝑖𝑦=𝐹𝑐𝛾(𝑓,𝑔,)(𝑦).(2.13) The proof is complete.

Definition 2.3. Let 𝑓 be a function in 𝐿1(+) and let be a function in 𝐿1(𝛽,+); their norms are defined as follows: 𝑓𝐿1(+)=0||||𝑓(𝑥)𝑑𝑥,𝐿1(𝛽,+)=0||||𝛽(𝑣)(𝑣)𝑑𝑣.(2.14) here 𝛽(𝑣)=2/𝑣.

Theorem 2.4. Let 𝑓 and 𝑔 be functions in 𝐿1(+), and let be function in 𝐿1(𝛽,+); then the following estimation holds: 𝛾(𝑓,𝑔,)𝐿1(+)𝑓𝐿1(+)𝑔𝐿1(+)𝐿1(𝛽,+).(2.15)

Proof. From formulas (2.1), (2.2), and (2.7), we have |||𝛾|||(𝑓,𝑔,)(𝑥)𝑑𝑥201𝑤||||(𝑤)𝑑𝑤0||||𝑓(𝑢)𝑑𝑢0||||𝑔(𝑣)𝑑𝑣.(2.16) Therefore, by Definition 2.3, 𝛾(𝑓,𝑔,)𝐿1(+)𝑓𝐿1(+)𝑔𝐿1(+)𝐿1(𝛽,+).(2.17)

Proposition 2.5. Let 𝑓,𝑔𝐿1(+), and let 𝐿1(1/𝑤,+); then the following identity holds: 𝛾1(𝑓,𝑔,)=2𝜋20(𝑤)𝑔1𝑒𝑤cosh𝑡𝐹(𝑓(|𝑡|)sign𝑡)(𝑥+1)𝑔1𝑒𝑤cosh𝑡𝐹(𝑓(|𝑡|)sign𝑡)(𝑥1)𝑑𝑤.(2.18)

Proof. From the definition (2.1) of the polyconvolution and the convolution (1.7), we have 𝛾=1(𝑓,𝑔,)(𝑥)40𝑓(𝑢)(𝑤)𝑔1𝑒𝑤cosh𝑡(𝑥𝑢+1)+𝑔1𝑒𝑤cosh𝑡(𝑥+𝑢1)𝑔1𝑒𝑤cosh𝑡(𝑥+𝑢+1)𝑔1𝑒𝑤cosh𝑡(𝑥𝑢1)𝑑𝑢𝑑𝑤.(2.19) From (2.19) and calculation, we obtain 1(𝑓,𝑔,)(𝑥)=𝜋20(𝑤)𝑔1𝑒𝑤cosh𝑡𝐹𝑓(|𝑡|)sign𝑡(𝑥+1)𝑔1𝑒𝑤cosh𝑡𝐹𝑓(|𝑡|)sign𝑡(𝑥1)𝑑𝑤.(2.20) The proof is complete.

Theorem 2.6. Let 𝑓,𝑔, be functions in 𝐿1(+),𝛾(𝑥)=sin𝑥, and let 𝑙 and 𝑘 be functions in 𝐿(1/𝑤,); then the following properties holds: (a)𝛾(𝑓,𝛾(𝑔,,𝑘),𝑙)=𝛾(𝑔,𝛾(𝑓,,𝑘),𝑙);(b)𝛾(𝑓2𝑔,,𝑘)=𝛾(𝑓,𝑔1,𝑘);(c)𝛾(𝑓𝛾𝑔,,𝑘)=𝛾(𝑓,𝑔𝛾1,𝑘);(d)𝛾(𝑓𝛾2𝑔,,𝑘)=𝛾(𝑓𝛾2,𝑔,𝑘);(e)𝛾(𝑓,𝑔3,𝑘)=𝛾(𝑔,𝑓3,𝑘).

Proof. First, we prove the assertion (c). From Theorem 2.2 and the convolutions (1.17), (1.10), we have 𝐹𝑐𝛾𝑓𝛾𝑔,,𝑘(𝑦)=sin𝑦𝐹𝑠𝑓𝛾𝐹𝑔(𝑦)𝑐𝐾(𝑦)𝑖𝑦𝐹=sin𝑦sin𝑦𝑠𝑓𝐹(𝑦)𝑠𝑔𝐹(𝑦)𝑐𝐾(𝑦)𝑖𝑦𝐹=sin𝑦𝑠𝑓(𝑦)𝐹𝑐𝑔𝛾1𝐾(𝑦)𝑖𝑦=𝐹𝑐𝛾𝑓,𝑔𝛾1.,𝑘(2.21) Therefore, the part (c) holds. Other parts can be proved in a similar way.

3. Applications in Solving Integral Equations and Systems of Integral Equations

Consider the integral equation𝑓(𝑥)+0+𝜃(𝑥,𝑢,𝑣,𝑤)𝑔(𝑢)𝑓(𝑣)(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤0𝜃1(𝑥,𝑢)𝑓(𝑢)𝑑𝑢+0𝜃2(𝑥,𝑢)𝑓(𝑢)𝑑𝑢=𝜑(𝑥),𝑥>0,(3.1) where 𝑔,,𝑘,𝑙, and 𝜑 are known functions, 𝑓 is an unknown function, 𝜃(𝑥,𝑢,𝑣,𝑤) is given by the formula (2.2), and 𝜃11(𝑥,𝑢)=2||||||||||||,𝜃2𝜋𝑘(𝑥+𝑢+1)𝑘𝑥+𝑢1sign(𝑥+𝑢1)+𝑘𝑥𝑢+1sign(𝑥𝑢+1)𝑘𝑥𝑢1sign(𝑥𝑢1)2(1𝑥,𝑢)=[].2𝜋𝑙(𝑥+𝑢)+𝑙(|𝑥𝑢|)(3.2)

Theorem 3.1. Suppose that 𝑔,𝑙,𝜑,𝑘1,𝑘2𝐿1(+), 𝐿1(1/𝑣,+), 𝑘=𝑘12𝑘2 such that 𝐹1+sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦+𝐹𝑠𝑘1𝐹(𝑦)𝑐𝑘2𝐹(𝑦)+𝑐𝑙(𝑦)0,(3.3) then (3.1) has a unique solution in 𝐿1(+) whose closed form is 𝑓(𝑥)=𝜑(𝑥)𝜑1𝜉(𝑥).(3.4) Here 𝜉𝐿1(+) is defined uniquely by 𝐹𝑐𝜉𝐹(𝑦)=sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘1𝐹(𝑦)𝑐𝑘2𝐹(𝑦)+𝑐𝑙(𝑦)𝐹1+sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘1𝐹(𝑦)𝑐𝑘2𝐹(𝑦)+𝑐𝑙(𝑦).(3.5)

Proof. We obtain the following lemmas.Lemma 3.2. For 𝑓,𝑘𝐿1(+), then the following operator also belongs to 𝐿1(+)0𝑓(𝑢)𝜃1(𝑥,𝑢)𝑑𝑢.(3.6) Moreover, the following factorization equality holds: 𝐹𝑐0𝑓(𝑢)𝜃1𝐹(𝑥,𝑢)𝑑𝑢(𝑦)=sin𝑦𝑠𝑘𝐹(𝑦)𝑐𝑓(𝑦),𝑦>0.(3.7)Lemma 3.3. Let 𝑔𝐿1(+), 𝐿1(1/𝑣,+); then the generalized convolution (𝑔𝛾3)(𝑥) belongs to 𝐿1(+) and the respectively factorization equality is 𝐹𝑐𝑔𝛾3𝐹(𝑦)=sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦,𝑦>0,(3.8) where 𝑔𝛾31(𝑥)=40𝑒𝑣cosh(𝑥+𝑢1)+𝑒𝑣cosh(𝑥𝑢+1)𝑒𝑣cosh(𝑥+𝑢+1)𝑒𝑣cosh(𝑥𝑢1)×𝑔(𝑢)(𝑣)𝑑𝑢𝑑𝑣,𝑥>0.(3.9)We now prove Theorem 3.1 with the help of convolution (1.7), Lemmas 1, and 2. We have 𝐹𝑐𝑓𝐹(𝑦)+sin𝑦𝑠𝑔𝐹(𝑦)𝑐𝑓𝐾(𝑦)𝑖𝑦+𝐹𝑠𝑘𝐹(𝑦)𝑐𝑓𝐹(𝑦)sin𝑦+𝑐𝑙𝐹(𝑦)𝑐𝑓𝐹(𝑦)=𝑐𝜑(𝑦).(3.10) Therefore, by the given condition, 𝐹𝑐𝑓𝐹(𝑦)=𝑐𝜑𝐹(𝑦)1sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘𝐹(𝑦)+𝑐𝑙(𝑦)𝐹1+sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘𝐹(𝑦)+𝑐𝑙(𝑦).(3.11) By the hypothesis 𝑘=𝑘12𝑘2, we see that sin𝑦(𝐹𝑠𝑘)(𝑦)=𝐹𝑐(𝑘1𝛾1𝑘2)(𝑦); using Lemma 3.3, we get 𝐹𝑐𝑓𝐹(𝑦)=𝑐𝜑𝐹(𝑦)1𝑐𝑔𝛾4(𝑦)+𝐹𝑐𝑘1𝛾1𝑘2𝐹(𝑦)+𝑐𝑙(𝑦)1+𝐹𝑐𝑔𝛾4(𝑦)+𝐹𝑐𝑘1𝛾1𝑘2𝐹(𝑦)+𝑐𝑙(𝑦).(3.12) In virtue of the Wiener-Levy theorem [25], by the given condition, there exists a function 𝜉𝐿1(+) such that 𝐹𝑐𝜉𝐹(𝑦)=sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘1𝐹(𝑦)𝑐𝑘2𝐹(𝑦)+𝑐𝑙(𝑦)𝐹1+sin𝑦𝑠𝑔𝐾(𝑦)𝑖𝑦𝐹+sin𝑦𝑠𝑘1𝐹(𝑦)𝑐𝑘2𝐹(𝑦)+𝑐𝑙(𝑦).(3.13) From (3.12) and (3.13), we have 𝐹𝑐𝑓𝐹(𝑦)=𝑐𝜑𝐹(𝑦)1𝑐𝜉(𝑦).(3.14) Then the solution in 𝐿1(+) of (3.1) has the form 𝑓(𝑥)=𝜑(𝑥)𝜑1𝜉(𝑥).(3.15) The proof is complete.

Remark 3.4. The integral equation (3.1) is a special case of the integral equation with the Toeplitz plus Hankel kernel (1.27) for 𝑥>0 and 𝑘1=1(𝑡)2||||+12𝜋𝑘(𝑡+1)𝑘𝑡1sign(𝑡1)+12𝜋𝑙(𝑡)42𝜋0𝑒𝑔(𝑢)(𝑤)𝑤cosh(𝑡+𝑢1)+𝑒𝑤cosh(𝑡𝑢+1)𝑒𝑤cosh(𝑡+𝑢+1)𝑒𝑤cosh(𝑡𝑢1)𝑘𝑑𝑢𝑑𝑤2=1(𝑡)2𝑘||||||||+12𝜋𝑡+1sign(𝑡+1)𝑘𝑡1sign(𝑡1)+12𝜋𝑙(|𝑡|)42𝜋0𝑒𝑔(𝑢)(𝑤)𝑤cosh(𝑡+𝑢1)+𝑒𝑤cosh(𝑡𝑢+1)𝑒𝑤cosh(𝑡+𝑢+1)𝑒𝑤cosh(𝑡𝑢1)𝑑𝑢𝑑𝑤.(3.16) Next, we consider the following system of two integral equations: 𝑓(𝑥)+0𝜃(𝑥,𝑢,𝑣,𝑤)𝑔(𝑢)(𝑣)𝑘(𝑤)𝑑𝑢𝑑𝑣𝑑𝑤+0𝜃3(𝑥,𝑢)𝑔(𝑢)𝑑𝑢=𝑝(𝑥)0𝜃4(𝑥,𝑢)𝑓(𝑢)𝑑𝑢+0𝜃5(𝑥,𝑢)𝑓(𝑢)𝑑𝑢+𝑔(𝑥)=𝑞(𝑥).(3.17) Here 𝜃(𝑥,𝑢,𝑣,𝑤) is defined by (2.2), and 𝜃31(𝑥,𝑢)=,𝜃2𝜋𝑙(𝑥+𝑢)𝑙(|𝑥𝑢|)sign(𝑥𝑢)41(𝑥,𝑢)=𝜉,𝜃2𝜋(𝑥+u)+𝜉(|𝑥𝑢|)sign(𝑥𝑢)51(𝑥,𝑢)=2||||,2𝜋𝜂(𝑥+𝑢1)+𝜂𝑥𝑢1𝜂(𝑥+𝑢+1)𝜂(𝑥𝑢+1)(3.18),𝑘,𝑙,𝜉,𝜂,𝑝,𝑞 are known functions, and 𝑓 and 𝑔 are unknown functions.

Theorem 3.5. Given that 𝑝,𝑞,,𝑙,𝜉,𝜂1,𝜂2𝐿1(+) and 𝑘𝐿1(𝛽,+), 𝜂=𝜂13𝜂2 such that 1(𝐹𝑐𝜓)(𝑦)0, where 𝜓(𝑥)=𝛾(𝜉,,𝑘)(𝑥)𝜉3𝑙𝜂(𝑥)1𝛾𝜂2,,𝑘(𝑥)𝑙1𝜂(𝑥).(3.19) Then the system (3.17) has a unique solution in 𝐿1(+)×𝐿1(+)whose closed form is as follows 𝑓(𝑥)=𝑝(𝑥)𝛾(𝑞,,𝑘)(𝑥)+𝑞3𝑙+𝑙1𝑝+(𝑥)𝛾(𝑞,,𝑘)1𝑙(𝑥)+𝑞3𝑙1𝑙(𝑥),𝑔(𝑥)=𝑞(𝑥)𝜉2𝑝𝜂(𝑥)𝛾2𝑝(𝑥)+𝑞2𝑙(𝑥)𝜉2𝑝2𝑙𝜂𝛾2𝑝2𝑙(𝑥).(3.20) Here, 𝑙𝐿1(+) is defined by 𝐹𝑐𝑙𝐹(𝑦)=𝑐𝜓(𝑦)𝐹1𝑐𝜓(𝑦).(3.21)

Proof. We need the following lemma.Lemma 3.6. Let 𝜉,𝑓𝐿1(+); then 0𝜉(𝑥+𝑢)+𝜉(|𝑥𝑢|)sign(𝑥𝑢)𝑓(𝑢)𝑑𝑢𝐿1+,𝐹𝑠12𝜋0𝐹𝜉(𝑥+𝑢)+𝜉(|𝑥𝑢|)sign(𝑥𝑢)𝑓(𝑢)𝑑𝑢(𝑦)=𝑠𝜉𝐹(𝑦)𝑐𝑓(𝑦),𝑦>0.(3.22)Using Theorem 2.2, Lemma 3.6, and the generalized convolution (1.15), (1.19), we have 𝐹𝑐𝑓𝐹(𝑦)+sin𝑦𝑠g𝐹(𝑦)𝑐𝐾(𝑦)𝑖𝑦𝑘+𝐹𝑠𝑙𝐹(𝑦)𝑠𝑔𝐹(𝑦)=𝑐𝑝𝐹(𝑦),𝑠𝜉𝐹(𝑦)𝑐𝑓𝐹(𝑦)+sin𝑦𝑐𝜂𝐹(𝑦)𝑐𝑓𝐹(𝑦)+𝑠𝑔𝐹(𝑦)=𝑠𝑞(𝑦).(3.23) On the other hand, from 𝜂=𝜂13𝜂2 we have sin𝑦(𝐹𝑐𝜂)(𝑦)=𝐹𝑠(𝜂1𝛾𝜂2)(𝑦). Therefore, using Theorem 2.2 and the generalized convolution (1.15), (1.17), we have ||||𝐹Δ=1sin𝑦𝑐(𝐾𝑦)𝑖𝑦𝑘+𝐹𝑠𝑙(𝐹𝑦)𝑠𝜉𝐹(𝑦)+sin𝑦𝑐𝜂1||||(𝑦)=1𝐹𝑐𝛾(𝜉,,𝑘)(𝑦)𝐹𝑐𝜉3𝑙(𝑦)𝐹𝑐𝜂1𝛾𝜂2,,𝑘(𝑦)𝐹𝑐𝑙𝛾1𝜂(𝑥).(3.24) Hence, in view of the Wiener-Levy theorem [25], by the given condition, there is a unique function 𝑙𝐿1(+) such that 1Δ𝐹=1+𝑐𝑙(𝑦),(3.25) where 𝐹𝑐𝑙=𝐹𝑐𝛾(𝜉,,𝑘)+𝐹𝑐𝜉3𝑙+𝐹𝑐𝜂1𝛾𝜂2,,𝑘+𝐹𝑐𝑙𝛾1𝜂1𝐹𝑐𝛾(𝜉,,𝑘)𝐹𝑐𝜉3𝑙𝐹𝑐𝜂1𝛾𝜂2,,𝑘𝐹𝑐𝑙𝛾1𝜂.(3.26) On the other hand, using Theorem 2.2 and the generalized convolution (1.15), we have Δ1=||||𝐹𝑐𝑝(𝐹𝑦)sin𝑦𝑐(𝐾𝑦)𝑖𝑦𝑘+𝐹𝑠𝑙(𝐹𝑦)𝑠𝑞1||||=𝐹(𝑦)𝑐𝑝(𝑦)𝐹𝑐((𝑞,,𝑘))(𝑦)𝐹𝑐𝑞3𝑙(𝑦).(3.27) Hence, from (3.25), (3.27) we have 𝐹𝑠𝑓𝐹(𝑦)=1+𝑐𝑙𝐹(𝑦)𝑐𝑝(𝑦)𝐹𝑐((𝑞,,𝑘))(𝑦)𝐹𝑐𝑞3𝑙=𝐹(𝑦)𝑐𝑝(𝑦)𝐹𝑐((𝑞,,𝑘))𝐹c𝑞3𝑙+𝐹𝑐𝑙1𝑝(𝑦)𝐹𝑐(𝑞,,𝑘)1𝑙(𝑦)𝐹𝑐𝑞3𝑙1𝑙(𝑦).(3.28) It shows that 𝑓(𝑥)=𝑝(𝑥)((𝑞,,𝑘))(𝑥)𝑞3𝑙+𝑙1𝑝(𝑥)(𝑞,,𝑘)1𝑙(𝑥)𝑞3𝑙1𝑙(𝑥).(3.29) Similarly, from the generalized convolutions (1.15), (1.19), we have Δ2=||||1𝐹𝑐𝑝(𝐹𝑦)𝑠𝜉𝐹(𝑦)+sin𝑦𝑐𝜂𝐹(𝑦)𝑠𝑞||||=𝐹(𝑦)𝑠𝑞(𝑦)𝐹𝑠𝜉2𝑝(𝑦)𝐹𝑠𝜂𝛾2𝑝(𝑦).(3.30) Using formulas (3.25), (3.30), we have 𝐹𝑠𝑔𝐹(𝑦)=1+𝑐𝑙𝐹(𝑦)𝑠𝑞(𝑦)𝐹𝑠𝜉2𝑝(𝑦)𝐹𝑠𝜂𝛾2𝑝=𝐹(𝑦)𝑠𝑞(𝑦)𝐹𝑠𝜉2𝑝(𝑦)𝐹𝑠𝜂𝛾2𝑝(𝑦)+𝐹𝑠𝑞2𝑙𝐹𝑠𝜉2𝑝2𝑙(𝑦)𝐹𝑠𝜂𝛾2𝑝2𝑙(𝑦).(3.31) It shows that 𝑔(𝑥)=𝑞(𝑥)𝜉2𝑝𝜂(𝑥)𝛾2𝑝(𝑥)+𝑞2𝑙(𝑥)𝜉2𝑝2𝑙𝜂𝛾2𝑝2𝑙(𝑥).(3.32) Pair (𝑓,𝑔) defined by fomulae (3.29) and (3.32) is a solution in closed form in 𝐿1(+)×𝐿1(+) of system (3.17). The proof is complete.

Acknowledgments

In the memory of professor V. A. Kakichev, the author wish to express his deep thanks to him for all his encouragement to the author in this investigative direction. This research is supported partially by Vietnam’s National Foundation for Science and Technology Development, Grant no. 101.01.21.09.