Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2010, Article ID 963043, 20 pages
http://dx.doi.org/10.1155/2010/963043
Research Article

Spectral Classification of Non-Coaxiality for Two-Dimensional Incremental Stress-Strain Response

1Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
3Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089-2531, USA

Received 31 August 2010; Accepted 30 December 2010

Academic Editor: K. R. Rajagopal

Copyright © 2010 Jiangu Qian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Rudnicki and J. R. Rice, “Conditions for the localization of deformation in pressure-sensitive dilatant materials,” Journal of the Mechanics and Physics of Solids, vol. 23, no. 6, pp. 371–394, 1975. View at Google Scholar · View at Scopus
  2. E. Papamichos and I. Vardoulakis, “Shear band formation in sand according to non-coaxial plasticity model,” Géotechnique, vol. 45, no. 4, pp. 649–661, 1995. View at Google Scholar · View at Scopus
  3. J. G. Qian, J. Yang, and M. S. Huang, “Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials,” Journal of Engineering Mechanics, vol. 134, no. 4, pp. 322–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. H. Roscoe, “The influence of strain in soil mechanics,” Géotechnique, vol. 20, pp. 129–170, 1970. View at Google Scholar
  5. M. Gutierrez, K. Ishihara, and I. Towhata, “Flow theory for sand during rotation of principal stress direction,” Soils and Foundations, vol. 31, no. 4, pp. 121–132, 1991. View at Google Scholar · View at Scopus
  6. A. Drescher and G. de Josselin de Jong, “Photoelastic verification of a mechanical model for the flow of a granular material,” Journal of the Mechanics and Physics of Solids, vol. 20, no. 5, pp. 337–340, 1972. View at Google Scholar · View at Scopus
  7. M. Oda, J. Konishi, and S. Nemat-Nasser, “Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling,” Mechanics of Materials, vol. 1, no. 4, pp. 269–283, 1982. View at Google Scholar · View at Scopus
  8. R. Hill, The Mathematical Theory of Plasticity, The Clarendon Press, Oxford, UK, 1950. View at Zentralblatt MATH
  9. I. Vardoulakis and B. Graf, “Calibration of constitutive models for granular materials using data from biaxial experiments,” Géotechnique, vol. 35, pp. 299–317, 1985. View at Google Scholar
  10. Z. Mroz, “An attempt to describe the behavior of metals under cyclic loads using a more general work hardening model,” Acta Mecanica, vol. 7, pp. 199–212, 1969. View at Google Scholar
  11. W. Wu, “Rational approach to anisotropy of sand,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 22, no. 11, pp. 921–940, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. X. S. Li and Y. F. Dafalias, “A constitutive, framework for anisotropic sand including non-proportional loading,” Géotechnique, vol. 54, no. 1, pp. 41–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. M. Spencer, “A theory of the kinematics of ideal soils under plane strain conditions,” Journal of the Mechanics and Physics of Solids, vol. 12, pp. 337–351, 1964. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. G. de Josselin de Jong, “The double sliding, free rotating model for granular assemblies,” Géotechnique, vol. 21, pp. 155–162, 1971. View at Google Scholar
  15. J. A. M. Teunissen, “On double shearing in frictional materials,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 31, no. 1, pp. 23–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Oda, “Inherent and induced anisotropy in plasticity theory of granular soils,” Mechanics of Materials, vol. 16, no. 1-2, pp. 35–45, 1993. View at Google Scholar · View at Scopus
  17. S. Nemat-Nasser, “A micromechanically-based constitutive model for frictional deformation of granular materials,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 6-7, pp. 1541–1563, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. H. S. Yu, “Non-coaxial theories of plasticity for granular materials,” in Proceedings of the 12th International Association for Computer Methods and Advances in Geomechanics (IACMAG '08), pp. 361–378, Goa, India, 2008.
  19. R. K. S. Wong and J. R. F. Arthur, “Induced and inherent anisotropy in sand,” Géotechnique, vol. 35, no. 4, pp. 471–481, 1985. View at Google Scholar · View at Scopus
  20. K. Miura, S. Miura, and S. Toki, “Deformation behavior of anisotropic dense sand under principal stress axes rotation,” Soils and Foundations, vol. 26, no. 1, pp. 36–52, 1986. View at Google Scholar · View at Scopus
  21. H. S. Yu and X. Yuan, “On a class of non-coaxial plasticity models for granular soils,” Proceedings of the Royal Society A, vol. 462, no. 2067, pp. 725–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Tsutsumi and K. Hashiguchi, “General non-proportional loading behavior of soils,” International Journal of Plasticity, vol. 21, no. 10, pp. 1941–1969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Mandl and R. F. Luque, “Fully developed plastic flow of granular materials,” Géotechnique, vol. 20, pp. 277–307, 1970. View at Google Scholar
  24. A. N. Norris, “Optimal orientation of anisotropic solids,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 59, no. 1, pp. 29–53, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH