Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2011, Article ID 329531, 9 pages
http://dx.doi.org/10.1155/2011/329531
Research Article

Limit Distribution of Inventory Level of Perishable Inventory Model

1School of Mathematics and Computational Science, Shenzhen University, Nanhai Avenue 3688, Guangdong, Shenzhen 518060, China
2Department of Urban Planning and Economic Management, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China

Received 27 January 2011; Accepted 14 June 2011

Academic Editor: Paulo Batista Gonçalves

Copyright © 2011 Hailing Dong and Guochao Jiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Whitin, Theory of Inventory Management, Princeton University Press, Princeton, NJ, USA, 1957.
  2. P. M. Ghare and G. P. Schrader, “A model for an exponentially decaying inventory,” Journal of Industrial Engineering, vol. 14, no. 5, pp. 238–243, 1963. View at Google Scholar
  3. F. Raafat, “Survey of literature on continuously deteriorating inventory models,” Journal of the Operational Research Society, vol. 42, no. 1, pp. 27–37, 1991. View at Google Scholar
  4. S. K. Goyal and B. C. Giri, “Recent trends in modeling of deteriorating inventory,” European Journal of Operational Research, vol. 134, no. 1, pp. 1–16, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. R. X. Li, H. J. Lan, and J. R. Mawhinney, “A review on deteriorating inventory study,” Journal Service Science & Management, vol. 3, pp. 117–129, 2010. View at Google Scholar
  6. B. Karmakar and K. D. Choudhury, “A review on inventory models for deteriorating items with shortages,” Assam University Journal of Science & Technology : Physical Sciences and Technology, vol. 6, pp. 51–59, 2010. View at Google Scholar
  7. C. L. Williams and B. E. Patuwo, “A perishable inventory model with positive order lead times,” European Journal of Operational Research, vol. 116, no. 2, pp. 352–373, 1999. View at Publisher · View at Google Scholar
  8. Y. Adachi, T. Nose, and S. Kuriyama, “Optimal inventory control policy subject to different selling prices of perishable commodities,” International Journal of Production Economics, vol. 60, pp. 389–394, 1999. View at Publisher · View at Google Scholar
  9. P. S. Deng, R. H.-J. Lin, and P. Chu, “A note on the inventory models for deteriorating items with ramp type demand rate,” European Journal of Operational Research, vol. 178, no. 1, pp. 112–120, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. G. P. Samanta and A. Roy, “A production inventory model with deteriorating items and shortages,” Yugoslav Journal of Operations Research, vol. 14, no. 2, pp. 219–230, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. S. R. Singh, N. Kumar, and R. Kumari, “Two warehouse inventory model for deteriorating items with shortages under inflation and time value of money,” International Journal of Computational and Applied Mathematics, vol. 4, no. 1, pp. 83–94, 2009. View at Google Scholar
  12. N. H. Shah and K. T. Shukla, “Deteriorating inventory model for waiting time partial backlogging,” Applied Mathematical Sciences, vol. 3, no. 9–12, pp. 421–428, 2009. View at Google Scholar · View at Zentralblatt MATH
  13. N. H. Shah and Y. K. Shah, “Literature survey on inventory model for deteriorating items,” Economic Annals, vol. 44, pp. 221–237, 2000. View at Google Scholar
  14. Y. K. Shah and M. C. Jaiswal, “An order-level inventory model for a system with constant rate of deterioration,” Opsearch, vol. 14, no. 3, pp. 174–184, 1977. View at Google Scholar
  15. S.-P. Wang, “An inventory replenishment policy for deteriorating items with shortages and partial backlogging,” Computers & Operations Research, vol. 29, no. 14, pp. 2043–2051, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. N. Ravichandran, “Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand,” European Journal of Operational Research, vol. 84, no. 2, pp. 444–457, 1995. View at Google Scholar
  17. H. N. Chiu, “An approximation to the continuous review inventory model with perishable items and lead times,” European Journal of Operational Research, vol. 87, no. 1, pp. 93–108, 1995. View at Google Scholar
  18. L. Liu and T. Yang, “An (s, S) random lifetime inventory model with a positive lead time,” European Journal of Operational Research, vol. 113, no. 1, pp. 52–63, 1999. View at Google Scholar
  19. B. Sivakumar, “A perishable inventory system with retrial demands and a finite population,” Journal of Computational and Applied Mathematics, vol. 224, no. 1, pp. 29–38, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. H. K. Alfares, “Inventory model with stock-level dependent demand rate and variable holding cost,” International Journal of Production Economics, vol. 108, no. 1-2, pp. 259–265, 2007. View at Publisher · View at Google Scholar
  21. T. Roy and K. S. Chaudhuri, “A production-inventory model under stock-dependent demand, Weibull distribution deterioration and shortage,” International Transactions in Operational Research, vol. 16, no. 3, pp. 325–346, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. K. Kanchanasuntorn and A. Techanitisawad, “An approximate periodic model for fixed-life perishable products in a two-echelon inventory-distribution system,” International Journal of Production Economics, vol. 100, no. 1, pp. 101–115, 2006. View at Publisher · View at Google Scholar
  23. Z. Hou, Z. Liu, and J. Zou, “QNQL processes: (H,Q)-processes and their applications,” Chinese Science Bulletin, vol. 42, no. 11, pp. 881–886, 1997. View at Publisher · View at Google Scholar
  24. Z.-T. Hou, “Markov skeleton processes and applications to queueing systems,” Acta Mathematicae Applicatae Sinica. English Series, vol. 18, no. 4, pp. 537–552, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. Z. Hou, C. Yuan, J. Zou et al., “Transient distribution of the length of GI/G/N queueing systems,” Stochastic Analysis and Applications, vol. 21, no. 3, pp. 567–592, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. Z. T. Hou and G. X. Liu, Markov Skeleton Processes and Their Applications, Science Press and International Press, 2005.
  27. H. L. Dong, Z. T. Hou, and G. C. Jiang, “Limit distribution of Markov skeleton processes,” Acta Mathematicae Applicatae Sinica, vol. 33, no. 2, pp. 290–296, 2010 (Chinese). View at Google Scholar