Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 105074, 12 pages
http://dx.doi.org/10.1155/2012/105074
Research Article

Fuzzy Variable Structure Control for Uncertain Systems with Disturbance

1School of Electrical and Information Engineering, Xihua University, Chengdu 610096, China
2School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054, China
3School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide SA 5005, Australia
4School of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
5Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway
6School of Automation, Chongqing University, Chongqing 400044, China

Received 2 September 2012; Accepted 26 October 2012

Academic Editor: Mohammed Chadli

Copyright © 2012 Bo Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212–222, 1977. View at Google Scholar · View at Scopus
  2. H. H. Choi, “Adaptive controller design for uncertain fuzzy systems using variable structure control approach,” Automatica, vol. 45, no. 11, pp. 2646–2650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. P. V. S. Cunha, R. R. Costa, F. Lizarralde, and L. Hsu, “Peaking free variable structure control of uncertain linear systems based on a high-gain observer,” Automatica, vol. 45, no. 5, pp. 1156–1164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Xing, C. C. Gao, and D. Li, “Sliding mode variable structure control for parameter uncertain stochastic systems with time-varying delay,” Journal of Mathematical Analysis and Applications, vol. 355, no. 2, pp. 689–699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Chen, T. Hisayama, and C. Y. Su, “Pseudo-inverse-based adaptive control for uncertain discrete time systems preceded by hysteresis,” Automatica, vol. 45, no. 2, pp. 469–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Wu, D. W. C. Ho, and C. W. Li, “Sliding mode control of switched hybrid systems with stochastic perturbation,” Systems and Control Letters, vol. 60, no. 8, pp. 531–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Lin, Y. Xia, P. Shi, and H. Wu, “Robust sliding mode control for uncertain linear discrete systems independent of time-delay,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 2, pp. 869–880, 2011. View at Google Scholar · View at Scopus
  8. T. E. Lee, J. P. Su, K. W. Yu, and K. H. Hsia, “Multi-objective fuzzy optimal design of alpha-beta estimators for nonlinear variable structure control,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 5, pp. 2123–2140, 2011. View at Google Scholar · View at Scopus
  9. S. Qu, Z. Lei, Q. Zhu, and H. Nouri, “Stabilization for a class of uncertain multi-time delays system using sliding mode controller,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7, pp. 4195–4205, 2011. View at Google Scholar · View at Scopus
  10. Y. Niu and D. W. C. Ho, “Stabilization of discrete-time stochastic systems via sliding mode technique,” Journal of the Franklin Institute, vol. 349, pp. 1497–1508, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Jia, Y. Niu, and Y. Zou, “Sliding mode control for stochastic systems subject to packet losses,” Information Sciences, vol. 217, pp. 117–126, 2012. View at Google Scholar
  12. L. Wu and D. W. C. Ho, “Sliding mode control of singular stochastic hybrid systems,” Automatica, vol. 46, no. 4, pp. 779–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. R. Karimi, “A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties,” Journal of the Franklin Institute, vol. 349, no. 4, pp. 1480–1496, 2012. View at Google Scholar
  14. L. Wu, P. Shi, and H. Gao, “State estimation and sliding-mode control of markovian jump singular systems,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp. 1213–1219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Jiang, P. Shi, and Z. Mao, “Sliding mode observer-based fault estimation for nonlinear networked control systems,” Circuits, Systems, and Signal Processing, vol. 30, no. 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Liu, P. Shi, L. Zhang, and X. Zhao, “Fault tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique,” IEEE Transactions on Circuits and Systems, vol. 58, pp. 2755–2764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. R. Karimi, “Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations,” International Journal of Control, Automation and Systems, vol. 9, no. 4, pp. 671–680, 2011. View at Google Scholar
  18. H. R. Karimi, “Adaptive H synchronization problem of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations: an LMI approach,” International Journal of Automation and Computing, vol. 8, no. 4, pp. 381–390, 2011. View at Google Scholar
  19. H. R. Karimi, M. Zapateiro, and N. Luo, “Stability analysis and control synthesis of neutral systems with time-varying delays and nonlinear uncertainties,” Chaos, Solitons and Fractals, vol. 42, no. 1, pp. 595–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. R. Karimi and P. Maass, “Delay-range-dependent exponential H synchronization of a class of delayed neural networks,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp. 1125–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. R. Karimi, B. Lohmann, B. Moshiri, and P. J. Maralani, “Wavelet-based identification and control design for a class of nonlinear systems,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 4, no. 1, pp. 213–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. R. Karimi and H. Gao, “Mixed H2/H output-feedback control of second-order neutral systems with time-varying state and input delays,” ISA Transactions, vol. 47, no. 3, pp. 311–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Yang, P. Shi, J. Zhang, and J. Qiu, “Robust H control for a class of discrete time fuzzy systems via delta operator approach,” Information Sciences, vol. 184, no. 1, pp. 230–245, 2012. View at Google Scholar
  24. Z. Wu, P. Shi, H. Su, and J. Chu, “Reliable H control for discrete-time fuzzy systems with infinite-distributed delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 22–31, 2012. View at Google Scholar
  25. Q. Zhou, P. Shi, J. Lu, and S. Xu, “Adaptive output feedback fuzzy tracking control for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 972–982, 2011. View at Google Scholar
  26. X. Su, P. Shi, and L. Wu, “A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay,” IEEE Transactions on Fuzzy Systems. In press.
  27. Z. Gao, B. Jiang, P. Shi, and Y. Xu, “Fault accommodation for near space vehicle attitude dynamics via T-S fuzzy models,” International Journal of Innovative Computing, Information and Control, vol. 6, no. 11, pp. 4843–4856, 2010. View at Google Scholar · View at Scopus
  28. Z. Pei and P. Shi, “Fuzzy risk analysis based on linguistic aggregation operations,” International Journal of Innovative Computing Information and Control, vol. 7, no. 12, pp. 7105–7117, 2011. View at Google Scholar
  29. G. Wang, P. Shi, and C. Wen, “Fuzzy approximation relations on fuzzy n-cell number space and their applications in classification,” Information Sciences, vol. 181, no. 18, pp. 3846–3860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 700–711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Zhou, P. Shi, S. Xu, and H. Li, “Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach,” IEEE Transactions on Fuzzy Systems. In press.
  32. X. Zhao, Y. Xu, Z. Zhang, and P. Shi, “Design of PSO fuzzy neural network control for ball and plate system,” International Journal of Innovative Computing Information and Control, vol. 7, no. 12, pp. 7091–7103, 2011. View at Google Scholar
  33. K. Zhang, B. Jiang, and P. Shi, “Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on piecewise Lyapunov functions,” IEEE Transactions on Fuzzy systems, vol. 20, no. 1, pp. 192–200, 2012. View at Google Scholar
  34. H. Khalil, Nonlinear Systems, Macmillan, New York, NY, USA, 1992.