Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 124029, 22 pages
http://dx.doi.org/10.1155/2012/124029
Research Article

High Accurate Simple Approximation of Normal Distribution Integral

1Electronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Cto. Gonzalo Aguirre Beltrán S/N, Zona Universitaria Xalapa, 91000 Veracruz, VER, Mexico
2Electronics Department, National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No.1, 72840 Tonantzintla, PUE, Mexico

Received 8 September 2011; Revised 15 October 2011; Accepted 18 October 2011

Academic Editor: Ben T. Nohara

Copyright © 2012 Hector Vazquez-Leal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Lipschutz, Probabilidad, McGraw-Hill, 2003.
  2. J. H. Patel and C. B. Read, Handbook of the Normal Distribution, Statistics A Series of Textbooks and Monographs, Marcel Dekker, New York, NY, USA, 2nd edition, 1996.
  3. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207–208, 2005. View at Google Scholar · View at Scopus
  7. J. H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. J. H. He, “New interpretation of homotopy perturbation method,” International Journal of Modern Physics B, vol. 20, no. 18, pp. 2561–2568, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  9. J. H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487–3578, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. J. H. He, “Recent development of the homotopy perturbation method,” Topological Methods in Nonlinear Analysis, vol. 31, no. 2, pp. 205–209, 2008. View at Google Scholar · View at Zentralblatt MATH
  11. L. M. B. Assas, “Approximate solutions for the generalized KdV-Burgers' equation by He's variational iteration method,” Physica Scripta, vol. 76, no. 2, pp. 161–164, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. J. H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1430–1439, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. Yildinm, “Exact solutions of poisson equation for electrostatic potential problems by means of the variational iteration method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 7, pp. 867–871, 2009. View at Google Scholar · View at Scopus
  14. M. Jalaal, D. D. Ganji, and G. Ahmadi, “An analytical study on settling of non-spherical particles,” Asia-Pacific Journal of Chemical Engineering. In press. View at Publisher · View at Google Scholar
  15. Z. Z. Ganji, D. D. Ganji, and M. Esmaeilpour, “Study on nonlinear Jeffery-Hamel flow by He's semi-analytical methods and comparison with numerical results,” Computers and Mathematics with Applications, vol. 58, no. 11-12, pp. 2107–2116, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. N. Jamshidi and D. D. Ganji, “Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire,” Current Applied Physics, vol. 10, no. 2, pp. 484–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Evans and K. R. Raslan, “The tanh function method for solving some important non-linear partial differential equations,” International Journal of Computer Mathematics, vol. 82, no. 7, pp. 897–905, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. F. Xu, “A generalized soliton solution of the Konopelchenko-Dubrovsky equation using He's exp-function method,” Zeitschrift fur Naturforschung, vol. 62, no. 12, pp. 685–688, 2007. View at Google Scholar · View at Scopus
  19. G. Adomian, “A review of the decomposition method in applied mathematics,” Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501–544, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. E. Babolian and J. Biazar, “On the order of convergence of Adomian method,” Applied Mathematics and Computation, vol. 130, no. 2-3, pp. 383–387, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. L.-N. Zhang and L. Xu, “Determination of the limit cycle by He's parameter-expansion for oscillators in a (u3/(1 + u2) potential,” Zeitschrift fur Naturforschung, vol. 62, no. 7-8, pp. 396–398, 2007. View at Google Scholar · View at Scopus
  22. M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1937–1945, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. M. Jalaal, D. D. Ganji, and G. Ahmadi, “Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media,” Advanced Powder Technology, vol. 21, no. 3, pp. 298–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Jalaal and D. D. Ganji, “On unsteady rolling motion of spheres in inclined tubes filled with incompressible Newtonian fluids,” Advanced Powder Technology, vol. 22, no. 1, pp. 58–67, 2011. View at Publisher · View at Google Scholar
  25. M. Jalaal and D. D. Ganji, “An analytical study on motion of a sphere rolling down an inclined plane submerged in a Newtonian fluid,” Powder Technology, vol. 198, no. 1, pp. 82–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. D. Ganji and A. Sadighi, “Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 411–418, 2006. View at Google Scholar · View at Scopus
  27. D. D. Ganji, “The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 355, no. 4–5, pp. 337–341, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  28. D. D. Ganji and A. Rajabi, “Assessment of homotopy-perturbation and perturbation methods in heat radiation equations,” International Communications in Heat and Mass Transfer, vol. 33, no. 3, pp. 391–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. D. D. Ganji, M. Rafei, A. Sadighi, and Z. Z. Ganji, “A comparative comparison of he’s method with perturbation and numerical methods for nonlinear equations,” International Journal of Nonlinear Dynamics in Engineering and Sciences, vol. 1, no. 1, pp. 1–20, 2009. View at Google Scholar
  30. M. H. Holmes, Introduction to Perturbation Methods, vol. 20 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1995.
  31. M. El-Shahed, “Application of He's Homotopy Perturbation Method to Volterra's Integro-differential Equation,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 163–168, 2005. View at Google Scholar · View at Scopus
  32. Y. X. Wang, H. Y. Si, and L. F. Mo, “Homotopy perturbation method for solving reaction-diffusion equations,” Mathematical Problems in Engineering, vol. 2008, Article ID 795838, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. S. Winitzki, “A handy approximation for the error function and its inverse,” Lecture Note, 2008.
  34. R. G. Hart, “A close approximation related to the error function,” Mathematics of Computation, vol. 20, pp. 600–602, 1966. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  35. M. R. Spiegel, Schaum’s Outline of Fourier Analysis with Applications to Boundary Value Problems, McGraw-Hill, 1974.
  36. W. Gander and J. Hrebicek, Solving Problems in Scientific Computing Using Maple and MATLAB, Springer, New York, NY, USA, 4th edition, 2004.
  37. R. C. Melville, L. Trajkovic, S. C. Fang, and L. T. Watson, “Artificial parameter homotopy methods for the DC operating point problem,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 6, pp. 861–877, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Yamamura, T. Sekiguchi, and Y. Inoue, “A fixed-point homotopy method for solving modified nodal equations,” IEEE Transactions on Circuits and Systems I, vol. 46, no. 6, pp. 654–665, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  39. H. Vázquez-Leal, L. Hernández-Martínez, and A. Sarmiento-Reyes, “Double-bounded homotopy for analysing nonlinear resistive circuits,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3203–3206, May 2005. View at Publisher · View at Google Scholar
  40. H. Vázquez-Leal, L. Hernández-Martínez, A. Sarmiento-Reyes, and R. Castañeda-Sheissa, “Numerical continuation scheme for tracing the double bounded homotopy for analysing nonlinear circuits,” in Proceedings of the International Conference on Communications, Circuits and Systems, vol. 2, pp. 1122–1126, May 2005.
  41. L. Gatet, H. Tap-Béteille, and M. Lescure, “Analog neural network implementation for a real-time surface classification application,” IEEE Sensors Journal, vol. 8, no. 8, Article ID 4567516, pp. 1413–1421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Velmurugan, S. Subramanian, V. Cevher et al., “On low-power analog implementation of particle filters for target tracking,” in Proceedings of the 14th European Signal Processing Conference (EUSIPCO '06), 2006.
  43. M. T. Abuelma'atti, “Universal CMOS current-mode analog function synthesizer,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 10, pp. 1468–1474, 2002. View at Publisher · View at Google Scholar · View at Scopus