`Mathematical Problems in EngineeringVolume 2012, Article ID 124029, 22 pageshttp://dx.doi.org/10.1155/2012/124029`
Research Article

## High Accurate Simple Approximation of Normal Distribution Integral

1Electronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Cto. Gonzalo Aguirre Beltrán S/N, Zona Universitaria Xalapa, 91000 Veracruz, VER, Mexico
2Electronics Department, National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro No.1, 72840 Tonantzintla, PUE, Mexico

Received 8 September 2011; Revised 15 October 2011; Accepted 18 October 2011

Copyright © 2012 Hector Vazquez-Leal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. S. Lipschutz, Probabilidad, McGraw-Hill, 2003.
2. J. H. Patel and C. B. Read, Handbook of the Normal Distribution, Statistics A Series of Textbooks and Monographs, Marcel Dekker, New York, NY, USA, 2nd edition, 1996.
3. J. H. He, â€śHomotopy perturbation technique,â€ť Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257â€“262, 1999.
4. J. H. He, â€śA coupling method of a homotopy technique and a perturbation technique for non-linear problems,â€ť International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37â€“43, 2000.
5. J. H. He, â€śApplication of homotopy perturbation method to nonlinear wave equations,â€ť Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695â€“700, 2005.
6. J. H. He, â€śHomotopy perturbation method for bifurcation of nonlinear problems,â€ť International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207â€“208, 2005.
7. J. H. He, â€śHomotopy perturbation method for solving boundary value problems,â€ť Physics Letters A, vol. 350, no. 1-2, pp. 87â€“88, 2006.
8. J. H. He, â€śNew interpretation of homotopy perturbation method,â€ť International Journal of Modern Physics B, vol. 20, no. 18, pp. 2561â€“2568, 2006.
9. J. H. He, â€śAn elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,â€ť International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487â€“3578, 2008.
10. J. H. He, â€śRecent development of the homotopy perturbation method,â€ť Topological Methods in Nonlinear Analysis, vol. 31, no. 2, pp. 205â€“209, 2008.
11. L. M. B. Assas, â€śApproximate solutions for the generalized KdV-Burgers' equation by He's variational iteration method,â€ť Physica Scripta, vol. 76, no. 2, pp. 161â€“164, 2007.
12. J. H. He, â€śVariational approach for nonlinear oscillators,â€ť Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1430â€“1439, 2007.
13. A. Yildinm, â€śExact solutions of poisson equation for electrostatic potential problems by means of the variational iteration method,â€ť International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 7, pp. 867â€“871, 2009.
14. M. Jalaal, D. D. Ganji, and G. Ahmadi, â€śAn analytical study on settling of non-spherical particles,â€ť Asia-Pacific Journal of Chemical Engineering. In press.
15. Z. Z. Ganji, D. D. Ganji, and M. Esmaeilpour, â€śStudy on nonlinear Jeffery-Hamel flow by He's semi-analytical methods and comparison with numerical results,â€ť Computers and Mathematics with Applications, vol. 58, no. 11-12, pp. 2107â€“2116, 2009.
16. N. Jamshidi and D. D. Ganji, â€śApplication of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire,â€ť Current Applied Physics, vol. 10, no. 2, pp. 484â€“486, 2010.
17. D. J. Evans and K. R. Raslan, â€śThe tanh function method for solving some important non-linear partial differential equations,â€ť International Journal of Computer Mathematics, vol. 82, no. 7, pp. 897â€“905, 2005.
18. F. Xu, â€śA generalized soliton solution of the Konopelchenko-Dubrovsky equation using He's exp-function method,â€ť Zeitschrift fur Naturforschung, vol. 62, no. 12, pp. 685â€“688, 2007.
19. G. Adomian, â€śA review of the decomposition method in applied mathematics,â€ť Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501â€“544, 1988.
20. E. Babolian and J. Biazar, â€śOn the order of convergence of Adomian method,â€ť Applied Mathematics and Computation, vol. 130, no. 2-3, pp. 383â€“387, 2002.
21. L.-N. Zhang and L. Xu, â€śDetermination of the limit cycle by He's parameter-expansion for oscillators in a (u3/(1 + u2) potential,â€ť Zeitschrift fur Naturforschung, vol. 62, no. 7-8, pp. 396â€“398, 2007.
22. M. Madani, M. Fathizadeh, Y. Khan, and A. Yildirim, â€śOn the coupling of the homotopy perturbation method and Laplace transformation,â€ť Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1937â€“1945, 2011.
23. M. Jalaal, D. D. Ganji, and G. Ahmadi, â€śAnalytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media,â€ť Advanced Powder Technology, vol. 21, no. 3, pp. 298â€“304, 2010.
24. M. Jalaal and D. D. Ganji, â€śOn unsteady rolling motion of spheres in inclined tubes filled with incompressible Newtonian fluids,â€ť Advanced Powder Technology, vol. 22, no. 1, pp. 58â€“67, 2011.
25. M. Jalaal and D. D. Ganji, â€śAn analytical study on motion of a sphere rolling down an inclined plane submerged in a Newtonian fluid,â€ť Powder Technology, vol. 198, no. 1, pp. 82â€“92, 2010.
26. D. D. Ganji and A. Sadighi, â€śApplication of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,â€ť International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 411â€“418, 2006.
27. D. D. Ganji, â€śThe application of He's homotopy perturbation method to nonlinear equations arising in heat transfer,â€ť Physics Letters A, vol. 355, no. 4–5, pp. 337â€“341, 2006.
28. D. D. Ganji and A. Rajabi, â€śAssessment of homotopy-perturbation and perturbation methods in heat radiation equations,â€ť International Communications in Heat and Mass Transfer, vol. 33, no. 3, pp. 391â€“400, 2006.
29. D. D. Ganji, M. Rafei, A. Sadighi, and Z. Z. Ganji, â€śA comparative comparison of he’s method with perturbation and numerical methods for nonlinear equations,â€ť International Journal of Nonlinear Dynamics in Engineering and Sciences, vol. 1, no. 1, pp. 1â€“20, 2009.
30. M. H. Holmes, Introduction to Perturbation Methods, vol. 20 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1995.
31. M. El-Shahed, â€śApplication of He's Homotopy Perturbation Method to Volterra's Integro-differential Equation,â€ť International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 163â€“168, 2005.
32. Y. X. Wang, H. Y. Si, and L. F. Mo, â€śHomotopy perturbation method for solving reaction-diffusion equations,â€ť Mathematical Problems in Engineering, vol. 2008, Article ID 795838, 2008.
33. S. Winitzki, â€śA handy approximation for the error function and its inverse,â€ť Lecture Note, 2008.
34. R. G. Hart, â€śA close approximation related to the error function,â€ť Mathematics of Computation, vol. 20, pp. 600â€“602, 1966.
35. M. R. Spiegel, Schaum’s Outline of Fourier Analysis with Applications to Boundary Value Problems, McGraw-Hill, 1974.
36. W. Gander and J. Hrebicek, Solving Problems in Scientific Computing Using Maple and MATLAB, Springer, New York, NY, USA, 4th edition, 2004.
37. R. C. Melville, L. Trajkovic, S. C. Fang, and L. T. Watson, â€śArtificial parameter homotopy methods for the DC operating point problem,â€ť IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 6, pp. 861â€“877, 1993.
38. K. Yamamura, T. Sekiguchi, and Y. Inoue, â€śA fixed-point homotopy method for solving modified nodal equations,â€ť IEEE Transactions on Circuits and Systems I, vol. 46, no. 6, pp. 654â€“665, 1999.
39. H. Vázquez-Leal, L. Hernández-Martínez, and A. Sarmiento-Reyes, â€śDouble-bounded homotopy for analysing nonlinear resistive circuits,â€ť in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3203â€“3206, May 2005.
40. H. Vázquez-Leal, L. Hernández-Martínez, A. Sarmiento-Reyes, and R. Castañeda-Sheissa, â€śNumerical continuation scheme for tracing the double bounded homotopy for analysing nonlinear circuits,â€ť in Proceedings of the International Conference on Communications, Circuits and Systems, vol. 2, pp. 1122â€“1126, May 2005.
41. L. Gatet, H. Tap-Béteille, and M. Lescure, â€śAnalog neural network implementation for a real-time surface classification application,â€ť IEEE Sensors Journal, vol. 8, no. 8, Article ID 4567516, pp. 1413â€“1421, 2008.
42. R. Velmurugan, S. Subramanian, V. Cevher et al., â€śOn low-power analog implementation of particle filters for target tracking,â€ť in Proceedings of the 14th European Signal Processing Conference (EUSIPCO '06), 2006.
43. M. T. Abuelma'atti, â€śUniversal CMOS current-mode analog function synthesizer,â€ť IEEE Transactions on Circuits and Systems I, vol. 49, no. 10, pp. 1468â€“1474, 2002.