Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 183906, 13 pages
http://dx.doi.org/10.1155/2012/183906
Research Article

The Impact of the HMCFRP Ratio on the Strengthening of Steel Composite I-Beams

Faculty of Engineering, Department of Civil Engineering, Sakarya University, Sakarya, Turkey

Received 5 October 2012; Accepted 23 October 2012

Academic Editor: Carlo Cattani

Copyright © 2012 E. Agcakoca and M. Aktas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Schnerch and S. Rizkalla, “Strengthening of scaled steel-concrete composite girders and steel monopole towers with CFRP,” in Proceedings of the 2nd International Conference on FRP Composites in Civil Engineering (CICE '04), Adelaide, Australia, December 2004.
  2. O. Benjeddou, M. B. Ouezdou, and A. Bedday, “Damaged RC beams repaired by bonding of CFRP laminates,” Construction and Building Materials, vol. 21, no. 6, pp. 1301–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sharif, G. J. Al-Sulaimani, I. A. Basunbul, M. H. Baluch, and B. N. Ghaleb, “Strengthening of initially loaded reinforced concrete beams using FRP plates,” ACI Structural Journal, vol. 91, no. 2, pp. 160–168, 1994. View at Google Scholar · View at Scopus
  4. M. Arduini and A. Nanni, “Behavior of precracked RC beams strengthened with carbon FRP sheets,” Journal of Composites for Construction, vol. 1, no. 2, pp. 63–70, 1997. View at Google Scholar · View at Scopus
  5. D. S. Lunn and S. H. Rizkalla, “Strengthening of infill masonry walls with FRP materials,” Journal of Composites for Construction, vol. 15, no. 2, pp. 206–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Al-Saidy, F. W. Klaiber, and T. J. Wipf, “Repair of steel composite beams with carbon fiber-reinforced polymer plates,” Journal of Composites for Construction, vol. 8, no. 2, pp. 163–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. García, A. Chiminelli, B. García, M. Lizaranzu, and M. A. Jiménez, “Characterization and material model definition of toughened adhesives for finite element analysis,” International Journal of Adhesion and Adhesives, vol. 31, no. 4, pp. 182–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Tavakkolizadeh and H. Saadatmanesh, “Strengthening of steel-concrete composite girders using carbon fiber reinforced polymers sheets,” Journal of Structural Engineering, vol. 129, no. 1, pp. 30–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Rizkalla, M. Dawood, and D. Schnerch, “Development of a carbon fiber reinforced polymer system for strengthening steel structures,” Composites A, vol. 39, no. 2, pp. 388–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dawood and S. Rizkalla, “Bond and splice behavior of high modulus CFRP materials boned to steel structures,” in Proceedings of the 3rd International Conference on FRP Composites in Civil Engineering Miami, 2006.
  11. D. Schnerch, K. Stanford, E. A. Sumner, and S. Rizkalla, “Bond behavior of CFRP strengthened steel bridges and structures,” in Proceeding of International Symposium on Bond Behavior of FRP in structures, 2005.
  12. D. Schnerch, M. Dawood, S. Rizkalla, and E. Sumner, “Proposed design guidelines for strengthening of steel bridges with FRP materials,” Construction and Building Materials, vol. 21, no. 5, pp. 1001–1010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Sen, L. Liby, and G. Mullins, “Strengthening steel bridge sections using CFRP laminates,” Composites B, vol. 32, no. 4, pp. 309–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Chen, X. Gu, and X. Zhao, “Fatigue behavior of CFRP repair non-load carrying cruciform welded Joint,” in Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, pp. 907–910, 2010.
  15. T. Chen, Q. Q. Yu, X. L. Gu, and X. L. Zhao, “Study on fatigue behavior of strengthened non-load-carrying cruciform welded joints using carbon fiber sheets,” International Journal of Structural Stability and Dynamics, vol. 12, no. 1, pp. 179–194, 2012. View at Google Scholar
  16. M. Aktas and E. Agcakoca, “Defining development length Of HM-CFRP in composite I-section strengthened with HM-CFRP,” New World Sciences Academy, vol. 7, no. 2, pp. 47–59, 2012. View at Google Scholar
  17. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities,” International Applied Mechanics, vol. 41, no. 12, pp. 1368–1377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Aktas and C. J. Earls, “Minor axis moment-thrust response behavior in steel I-shaped members,” Journal of Structural Engineering, vol. 132, no. 7, pp. 1079–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus