Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 186481, 9 pages
Research Article

Stabilizing of Subspaces Based on DPGA and Chaos Genetic Algorithm for Optimizing State Feedback Controller

1Control Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166614776, Iran
2Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4

Received 17 May 2012; Accepted 2 October 2012

Academic Editor: Jui-Sheng Lin

Copyright © 2012 M. Hosseinpour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory, McGraw-Hill Book, New York, NY, USA, 1969. View at Zentralblatt MATH
  2. K. Ogata, Modern Control Engineering, Prentice Hall PTR, 2001. View at Zentralblatt MATH
  3. H. Rosenbrock, “Distinctive problems of process control,” Chemical Engineering Progress, vol. 58, pp. 43–50, 1962. View at Google Scholar
  4. R. L. Haupt, S. E. Haupt, and J. Wiley, Practical Genetic Algorithms, Wiley-Interscience, Hoboken, NJ, USA, 2nd edition, 2004. View at Zentralblatt MATH
  5. T. Jili, W. Ning, and H. Xiongxiong, “Stabilization subspaces based DPGA for optimizing PID controllers,” in Proceedings of the 27th Chinese Control Conference (CCC'08), pp. 38–42, Kunming, China, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Boston, Mass, USA, 1992.
  7. W. Banzhaf, J. Koza, C. Ryan, L. Spector, and C. Jacob, “Genetic programming,” IEEE Intelligent Systems and Their Applications, vol. 15, pp. 74–84, 2000. View at Google Scholar
  8. A. Roy and K. Iqbal, “PID controller design for first-order-plus-dead-time model via Hermite-Biehler theorem,” in Proceedings of the IEEE American Control Conference, vol. 6, pp. 5286–5291, June 2003. View at Scopus
  9. G. J. Silva, A. Datta, and S. P. Bhattacharyya, PID Controllers for Time-Delay Systems, Control Engineering, Birkhäuser, Boston, Mass, USA, 2005. View at Zentralblatt MATH
  10. T. Wu, Y. Cheng, J. Tan, and T. Zhou, “The application of chaos genetic algorithm in the PID parameter optimization,” in Proceedings of the 3rd International Conference on Intelligent System and Knowledge Engineering (ISKE'08), pp. 230–234, Xiamen, China, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Xiang and L. A. Nguyen, “Control of unstable processes with dead time by PID controllers,” in Proceedings of the 5th International Conference on Control and Automation (ICCA'05), vol. 2, pp. 703–708, June 2005. View at Scopus
  12. Y. Tian and H. Q. Vu, “A multiple population genetic algorithm and its application in fuzzy controller,” in Proceedings of the 3rd International Symposium on Intelligent Information Technology and Security Informatics (IITSI'10), pp. 729–733, Jinggangshan, China, April 2010. View at Publisher · View at Google Scholar · View at Scopus