Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 407064, 13 pages
http://dx.doi.org/10.1155/2012/407064
Research Article

Two Quarantine Models on the Attack of Malicious Objects in Computer Network

1Department of Applied Mathematics, Birla Institute of Technology, Mesra, Ranchi 835215, India
2Department of Applied Mathematics, Nilai Educational Trust's Group of Institutions, Thakurgaon, Ranchi 835205, India

Received 5 April 2011; Accepted 3 June 2011

Academic Editor: Zidong Wang

Copyright © 2012 Bimal Kumar Mishra and Aditya Kumar Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. J. Newman, S. Forrest, and J. Balthrop, “Email networks and the spread of computer viruses,” Physical Review E, vol. 66, no. 3, Article ID 035101, 4 pages, 2002. View at Publisher · View at Google Scholar
  2. R. M. Anderson and R. M. May, Infection Disease of Humans, Dynamics and Control, Oxford University Press, Oxford, UK, 1992.
  3. R. M. Anderson and R. M. May, “Population biology of infectious diseases,” Nature, vol. 180, pp. 361–367, 1999. View at Google Scholar
  4. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “Self-nonself discrimination in a computer,” in Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 202–212, May 1994.
  5. E. Gelenbe, “Keeping viruses under control,” in Proceedings of the 20th International Symposium on Computer and Information Sciences (ISCIS '05), vol. 3733 of Lecture Notes in Computer Science, pp. 304–311, Springer, October 2005. View at Publisher · View at Google Scholar
  6. E. Gelenbe, “Dealing with software viruses: a biological paradigm,” Information Security Technical Report, vol. 12, no. 4, pp. 242–250, 2007. View at Publisher · View at Google Scholar
  7. E. Gelenbe, V. Kaptan, and Y. Wang, “Biological metaphors for agent behavior,” in Computer Science, pp. 667–675, Springer-Verlag, 2004. View at Google Scholar
  8. J. R. C. Piqueira and F. B. Cesar, “Dynamical models for computer viruses propagation,” Mathematical Problems in Engineering, vol. 2008, Article ID 940526, 11 pages, 2008. View at Publisher · View at Google Scholar
  9. J. R. C. Piqueira, B. F. Navarro, and L. H. A. Monteiro, “Epidemiological models applied to virus in computer networks,” Journal of Computer Science, vol. 1, no. 1, pp. 31–34, 2005. View at Google Scholar
  10. W. T. Richard and J. C. Mark, “Modeling virus propagation in peer-to-peer networks,” in Proceedings of the 5th International Conference on Information, Communications and Signal Processing, pp. 981–985, December 2005.
  11. B. K. Mishra and D. K. Saini, “SEIRS epidemic model with delay for transmission of malicious objects in computer network,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1476–1482, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. B. K. Mishra and D. K. Saini, “Mathematical models on computer viruses,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 929–936, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. Z. Feng and H. R. Thieme, “Recurrent outbreaks of childhood diseases revisited: the impact of isolation,” Mathematical Biosciences, vol. 128, no. 1-2, pp. 93–130, 1995. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. Z. Feng and H. R. Thieme, “Endemic models with arbitrarily distributed periods of infection I: general theory,” SIAM Journal on Applied Mathematics, vol. 61, no. 3, pp. 803–833, 2000. View at Google Scholar · View at Scopus
  15. Z. Feng and H. R. Thieme, “Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery,” SIAM Journal on Applied Mathematics, vol. 61, no. 3, pp. 983–1012, 2000. View at Google Scholar · View at Scopus
  16. L. I. Wu and Z. Feng, “Homoclinic bifurcation in an SIQR model for childhood diseases,” Journal of Differential Equations, vol. 168, no. 1, pp. 150–167, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. K. L. Cooke and P. van den Driessche, “Analysis of an SEIRS epidemic model with two delays,” Journal of Mathematical Biology, vol. 35, no. 2, pp. 240–260, 1996. View at Google Scholar
  18. M. Y. Li, J. R. Graef, L. C. Wang, and J. Karsai, “Global dynamics of a SEIR model with varying total population size,” Mathematical Biosciences, vol. 160, no. 2, pp. 191–213, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. D. Greenhalgh, “Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity,” Mathematical and Computer Modelling, vol. 25, no. 2, pp. 85–107, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. J. K. Hale, Ordinary Differential Equations, Krieger, Basel, Switzerland, 2nd edition, 1980.
  21. H. W. Hethcote, H. W. Stech, and P. van dan Driessche, “Periodicity and stability in epidemic models: a survey,” in Differential Equations and Applications in Ecology, Epidemics and Population Problems, K. L. Cook, Ed., pp. 65–85, Academic Press, New York, NY, USA, 1981. View at Google Scholar
  22. M. Y. Li and J. S. Muldowney, “Global stability for the SEIR model in epidemiology,” Mathematical Biosciences, vol. 125, no. 2, pp. 155–164, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. M. Y. Li and L. Wang, “Global stability in some SEIR epidemic models,” in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, C. Chavez, S. Blower, P. van den Driessche, D. Kirscner, and A. Yakhdu, Eds., vol. 126, pp. 295–311, Springer, New York, NY, USA, 2002. View at Google Scholar · View at Zentralblatt MATH
  24. Y. Michel, H. Smith, and L. Wang, “Global dynamics of an seir epidemic model with vertical transmission,” SIAM Journal on Applied Mathematics, vol. 62, no. 1, pp. 58–69, 2001. View at Google Scholar
  25. H. Dong, Z. Wang, and H. Gao, “Observer-based H∞ control for systems with repeated scalar nonlinearities and multiple packet losses,” International Journal of Robust and Nonlinear Control, vol. 20, no. 12, pp. 1363–1378, 2010. View at Publisher · View at Google Scholar
  26. Z. Wang, D. W. C. Ho, H. Dong, and H. Gao, “Robust H∞ finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations,” IEEE Transactions on Automatic Control, vol. 55, no. 7, Article ID 5441037, pp. 1716–1722, 2010. View at Publisher · View at Google Scholar
  27. B. Shen, Z. Wang, and Y. S. Hung, “Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688, 2010. View at Publisher · View at Google Scholar
  28. B. Shen, Z. Wang, H. Shu, and G. Wei, “Robust H∞ finite-horizon filtering with randomly occurred nonlinearities and quantization effects,” Automatica, vol. 46, no. 11, pp. 1743–1751, 2010. View at Publisher · View at Google Scholar
  29. B. Shen, Z. Wang, and X. Liu, “Bounded H-infinity synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon,” IEEE Transactions on Neural Networks, vol. 22, no. 1, pp. 145–157, 2011. View at Publisher · View at Google Scholar · View at PubMed
  30. H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Variance-constrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case,” IEEE Transactions on Signal Processing, vol. 58, no. 5, Article ID 5410142, pp. 2534–2543, 2010. View at Publisher · View at Google Scholar
  31. H. Hethcote, M. Zhien, and L. Shengbing, “Effects of quarantine in six endemic models for infectious diseases,” Mathematical Biosciences, vol. 180, pp. 141–160, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet