Research Article  Open Access
Travel Time Model of LeftTurning Vehicles at Signalized Intersection
Abstract
The travel time of leftturning vehicles at signalized intersection was discussed. Under the assumption that the opposing through vehicles headway follows M3 distribution, the travel time model was established on the basis of gap theory and queue theory. Comparison was done with the common model based on the assumption that the opposing through vehicles headway follows negative exponential distribution. The results show that the model in this paper has stronger applicability and its most relative error is less than 15%. In addition, the sensitivity analysis was done. The results show that the opposing through flow rate has significant impact on travel time. The impact of leftturning flow rate and following headway is light when the opposing through flow rate is small, the threshold is about 0.18 veh/s. The model established in this paper can well calculate travel time of leftturning vehicles at intersection, and the methodology may provide reference to other occasions.
1. Introduction
Intersections are often the bottleneck of urban road network, and leftturning movement at intersections not only generates the largest amount of conflicts, but also is the focus and difficulty of the traffic management and control [1–4]. The travel time of vehicles at intersections is the basis to optimize urban traffic signal control and design and one of the breakthrough points to calculate the vehicles delay at intersections as well [5, 6]. Liang et al. analyzed the conflict disciplines of the fourphase signalized intersection between rightturning motor vehicles and through bicycles, established a theoretical model and a binary regression model of rightturning vehicles travel time. The former was based on gap theory and queue theory; the latter was built on the basis of field observation taking rightturning vehicles flow rate and through bicycle flow rate as two independent variables, and studied the application scope of the two models [7]. The methodology had an assumption that the bicycles crossing intersection only in one row, which is not in accordance with the facts. Smith and Walsh established motor vehicles and nonmotor vehicles delay models under different mixed traffic conditions and different ways of traffic control, which was based on interaction between motor vehicles and nonmotor vehicles [8]. Kebab and Dixon utilized recording timestamps for vehicles at three specified event locations on the approach, using a video camera recording system to collect the data to measure the approach delay at signalized intersections and to validate travel time estimation models for arterial transportation systems. The methodology can provide fundamental and highquality information for field delay measurement and travel time model [9]. Boyce et al. using the function of link travel time and travel time for each turning movement described a traffic assignment model [10]. Dixon and Birchman tested two travel time models—the Overflow Delay Model (ODM) and Highway Capacity Manual (HCM) travel time models. Results of this research showed that the ODM and HCM models tend to predict accurate delays and travel times for below capacity conditions. However, the ODM and HCM models performed poorly for field data when the worst performing arrival type was assumed [11]. Liu et al. discussed the travel time of vehicles on urban roads, considering the basic link segment travel time and intersection delay as the basic units [12].
According to the above reference documents, there are more studies for vehicles delay at intersections, while less ones for the travel time of different turning movements at intersections. Typically, Liang et al. established a rightturning motor cars’ travel time model considering the conflicts between motor vehicles and nonmotor vehicles at intersections, which provided a good reference for the followup researches. As the model was built on the basis of strict assumptions, for example, the arrival of nonmotor flow and rightturning motor flow were both subjected to Poisson distributions; nonmotor flows were only bicycles, and the bicycle flow was only in one line; and the service time followed a negative exponential distribution. While urban road traffic is more and more congested and the Poisson distribution is only applicable to free flow, it is hard to meet the above assumptions in real traffic circumstances, thus it restricts the application of the model to a large extent. Consequently, the travel time of leftturning vehicles at signalized intersections is calculated on the basis of previous studies and overcoming the deficiencies.
2. Basic Assumptions
Convenient for the study, the following assumptions were made in this paper.(1)The arrival of opposing through vehicles headway follows M3 distribution. The vehicles are divided into two parts, one part of vehicles maintains a uniform headway , the other part of vehicles operates in free way, and the headway is bigger than . The leftturning flow has special lane and its headway follows negative exponential distribution.(2)There are two shares of opposing through flows which have conflicts with leftturning movements.(3)Drivers strictly abide by the principle of the majorstreet priority, and there is no grab row phenomenon.(4)The gap theory is used for the situation that minorstreet traffic flow cross the majorstreet traffic flow perpendicularly at unsignalized intersections. The actual leftturning movement at intersections does not cross the opposing traffic in perpendicularity. In this case, it is assumed that the leftturning movement crossed them perpendicularly.
3. Theory Foundations
(1)Gap theory: at majorstreet and minorstreet unsignalized intersections, the vehicles on the majorstreet have the priority to pass without stopping, and ones on the minorstreet can cross only when there is enough headway in the majorstreet traffic flow. Thus, the maximum traffic volume of minorstreet can be computed by calculating the number of enough headways that the main traffic flow can provide.(2)Queue theory: according to the basic assumptions above, while customers wait for services in the queue system, this system subjects to M/G/1, that is, arrival follows Poisson distribution, service time follows arbitrary distribution, a single reception desk obeying the rule of the first comer is the first to be served.4. Model Establishments
4.1. Model Based on Headway with M3 Distribution
Travel time of leftturning vehicles crossing through signalized intersections consists of two parts, one is the travel time () passing through the conflict zone and the other is the delay generated by the signal control.
4.1.1. Model Establishment of
As shown in Figure 1, there are two shares of opposing through flows which have conflicts with leftturning vehicles. Assuming the lane located closer to the centerline is lane 1, the other is lane 2, and leftturning flow is the secondary, while the through flows are the main ones. The maximum leftturning flow rate crossing through conflict flow can be calculated by gap theory.
In queue theory, conflict zone between leftturning and opposing through vehicles can be regarded as a singleservice desk, leftturning vehicles receive service, and headway of opposing through flow provides service. Under the above assumptions, headway of opposing through flow follows M3 distribution, the whole system’s arrival can be regarded as Poisson distribution, the service time an arbitrary distribution, a single reception desk system obeying the rule of the first comer is the first to be served, namely the M/G/1 system.
It is assumed that the critical accepted gap of leftturning vehicles crossing through the conflict flow is , travel time of leftturning vehicles crossing lane 1 is , represents headway of vehicles on lane 1, is headway of vehicles on lane 2, and denotes the following headway of leftturning vehicles. It is clear that the leftturning vehicles passing through the intersection is dependent on the headways of lane 1 and lane 2. Assuming only one leftturning vehicle is allowed to pass, one of the following two situations should be satisfied. One is that lane 1 must meet and lane 2 must meet . In this condition, only one vehicle can cross lane 1 and more than one vehicle can cross lane 2. Accordingly, only one leftturning vehicle may cross the lanes 1 and 2 at the same time; the other is that lane 1 must meet and lane 2 must meet . In this condition, one more vehicle can cross lane 1 and only one vehicle can cross lane 2. Accordingly, only one leftturning vehicle may cross the lanes 1 and 2 at the same time. represents the travel time of leftturning vehicles crossing lane 1, so the additional time is needed in headway of lane 2.
Under the assumption that the headway of opposing through flow follows M3 distribution, thus in the first case, the probability of allowing leftturning vehicles to pass can be expressed as: where —the probability of allowing leftturning vehicles to pass; —the minimum headway of vehicles moving in team, s; —the probability of free flow;, is the flow rate of the opposing through flows, veh/s; the other parameters have the same meanings as above.
Similarly, in the second case, the probability of allowing leftturning vehicles to pass is the same with the first case. Consequently, the maximum leftturning flow rate can be expressed as If , it can be concluded that
According to queue theory, the average travel time of leftturning vehicles crossing through the conflict zone can be written as: where —arrival rate of leftturning vehicles, veh/s; —service rate of leftturning flow, ; —variance of service time; —service intensity or traffic intensity, which reflects the traffic conditions. If , it means that the flow is stable and each traffic condition will be repeated with a certain probability; If , the flow is unstable, and queue will become longer and longer.
When , service time is uniform distribution, which may be expressed as: when , service time is subject to negative exponential distribution, which can be written as
4.1.2. Established Model of Delay
At signalized intersection, while red light is on, leftturning vehicles stop and the following vehicles may be delayed by the front ones. Based on this situation, a simplified queue theory can be used to calculate the delay. The vehicles arrive at a certain rate without being evacuated during red light, and when the green light turns on, the vehicles in congested queue evacuate at some other rate and new ones arrive at the same time. The whole process can be shown in Figure 2. It can be seen that after the red light time , the vehicles can evacuate in time , the area of the shaded part denotes the total vehicles delay, that is, is the overall delayed vehicles at the end of , then the average delay of leftturning vehicles is If the green light time is not long enough to evacuate the queued vehicles, the saturated queue vehicles will cause additional delay. It may be expressed by model of HCM2000. The model is written as follows: where —saturation of lane; —capacity of lane, pcu/h; —length of analysis period, h; —correction factor of the additional delay; —correction factor of the additional delay caused by upstream intersection.
To sum up, by (4.4), (4.7), and (4.8), the average travel time model was named as Model I and it can be expressed as where —the length of entrance and exit lane, m, respectively; —the observed spot speed at entrance and exit, m/s, respectively; the other parameters have the same meanings as above.
4.2. Existing Models
The most present researches assume that the main flows arrival is subjected to Poisson distribution and the queue system is an M/M/1 system. The corresponding model was named as Model II, and it is as follows—the arrival rate of vehicles on lane 1, veh/s; —the arrival rate of vehicles on lane 2, veh/s; the other parameters have the same meanings as above.
5. Model Validations
Intersections in Harbin and Weihai were selected as examples to verify the above models. As mentioned above, they were the models based on M3 distribution (Model I) and the one based on negative exponential distribution (Model II). With signal cycle as the investigation interval, the field observation was conducted in both rush and nonrush hour under different weather conditions (normal, ice and snowfall conditions). Put the above observation data and the results into (4.9) and (4.10), results are shown in Table 1. The comparison curves of Model I, Model II, and the field observation data are shown in Figure 3.

From the results the following conclusions may be gotten. (1) Model I has better performance than model II on the whole, and most of the model I error is less than 15%. Model II has the larger relative errors, most are more than 20%, especially in the case of a larger opposing through flow rate, the maximum one is 103.6%. The reason is with the increasing of the opposing through flow rate, the negative exponential distribution has worse and worse performance in headway description, and the M3 distribution has better performance all the time. (2) With the increasing of the opposing through flow rate, the relative error of Model I increases a little, and the field observation data is smaller than theoretical value. The reason for this phenomenon may be described as follows. The model is set up based on the assumption that the drivers strictly obey the priority rules and there is no grabbing line phenomenon. But in fact, the leftturning vehicles will grabline with its number increase. And the grabbing line decreases its travel time. (3) On the whole, the theoretical value of model II is larger than the field data, and the error is getting larger and larger with the increasing of the opposingthrough flow rate and it is not applicable any more. The reasons are as follows: with the increasing of the flow rate, the premise of exponential distribution does not hold, while M3 distribution can fit well to the vehicles arriving properties.
6. Sensitivity Analyses
With the models validation, Model I has better performance overall. The relationship between several variables and travel time in model I was explored in this section. In details, these variables included opposing through flow rate, leftturning flow rate, and the following headway of leftturning vehicles.
The influence of the variables is shown in Figures 4 and 5. Figure 4 illustrates the effect of opposing through and leftturning flow rates on the travel time of leftturning vehicles. This relationship is expressed by (4.9). In general, the trends in this figure indicate that leftturning vehicles travel time increases with increasing of opposing through flow rate, and leftturning flow rate. And the leftturning flow rate has no obvious effect on travel time when the opposing through flow rate is small. The threshold is about 0.18 veh/s. These findings relate to the bigger number of opposing through vehicles that there would be less acceptable headway, and the bigger number of leftturning vehicles that there would be longer queue on the condition that there is no grabline phenomenon.
The influence of opposing through flow rate and leftturning vehicles following headway on leftturning vehicles travel time expressed by (4.9) is shown in Figure 5. The relationships shown in this figure indicate that the effect of opposing through flow rate and leftturning vehicles following headway on the travel time is the same as shown in Figure 4. Leftturning vehicles travel time increases with increasing of the above two variables.
7. Conclusions and Further Studies
(1)The model based on M3 distribution has better performance than the one based on Poisson distribution, it has a wider applicable scope and better overall performance.(2)From the sensitivity analysis for the model based on M3 distribution, it can be seen that the travel time of leftturning vehicles is an increasing function with opposing through flow rate, leftturning flow rate and leftturning vehicles following headway. And the leftturning flow rate has no obvious effect on travel time when the opposing through flow rate is small. The threshold is about 0.18 veh/s.(3)The object of this study is the signalized intersection with a special pedestrian phase. Thus, it avoids the conflicts between motor and nonmotor vehicles, and the application of the models is limited to such situation. Further studies should focus on the extension to other occasions.Acknowledgments
This research was supported by China Postdoctoral Science Foundation 2011M500676 and Heilongjiang Province key Teachers Foundation 1155G46.
References
 Y.H. Wang and N. L. Nihan, “Estimating the risk of collisions between bicycles and motor vehicles at signalized intersections,” Accident Analysis and Prevention, vol. 36, no. 3, pp. 313–321, 2004. View at: Publisher Site  Google Scholar
 W.L. GHENG, L. Kaiguo, and Y. E. Pengyao, “Analysis of effects of leftturn prohibitions on atgrade intersections,” Urban Transport of China, vol. 5, no. 5, pp. 26–30, 2007 (Chinese). View at: Google Scholar
 C. Quiroga, M. Perez, and S. Venglar, “Tool for measuring travel time and delay on arterial corridors,” in Proceedings of the International Conference on Applications of Advanced Technologies in Transportation Engineering, pp. 600–607, August 2002. View at: Google Scholar
 J. D. Reid and J. Hummer, “Travel time comparisons between seven unconventional arterial intersection designs,” Transportation Research Record, no. 1751, pp. 56–66, 2001. View at: Google Scholar
 B. Hoeschen, D. Bullock, and M. Schlappi, “Estimating intersection control delay using large data sets of travel time from a global positioning system,” Transportation Research Record, no. 1917, pp. 18–27, 2005. View at: Google Scholar
 S. Kamijo, T. Kawahara, and M. Sakauchi, “Vehicle sequence image matching for travel time measurement between intersections,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1359–1364, October 2005. View at: Google Scholar
 C.Y. Liang, C.G. Wang, Z. Shen, and D.H. Wang, “Calculation method of travel time of rightturn vehicle at motor and nonmotorvehicle mixed traffic intersection,” Journal of Jilin University (Engineering and Technology Edition), vol. 37, no. 5, pp. 1053–1057, 2007 (Chinese). View at: Google Scholar
 J. R. L. Smith and T. Walsh, “Safety impacts of bicycle lanes,” Transportation Research Record, no. 1168, pp. 49–56, 1988. View at: Google Scholar
 M. W. Kebab and M. Dixon, Field Measurement of Delay at Signalized Intersections, vol. 9, Department of Transportation, Office of Research and Special Programs, Washington, DC, USA, 2006.
 D. E. Boyce, C. Meneguzzer, N. Rouphail, A. Sen, and T. Lauritzen, UserOptimal Route Choice Model with Asymmetric Cost Functions Incorporating IntersectionRelated Travel Times, vol. 1, Federal Highway Administration, Springfield, Ill, USA, 1990.
 M. Dixon and J. Birchman, Validation of Arterial TravelTime Estimation Models Using Field Data and Simulation, vol. 12, Department of Transportation, University Transportation Centers Program, Washington, DC, USA, 2006, Report: NIATT0705; KLK237.
 H. Liu, Z. Van, J. Henk, V. L. Hans, Y.S. Chen, and K. Zhang, “Prediction of urban travel times with intersection delays,” in Proceedings of the IEEE Conference on Intelligent Transportation Systems (ITSC '05), pp. 1062–1067, September 2005. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2012 Leng Junqiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.