Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 479087, 18 pages
http://dx.doi.org/10.1155/2012/479087
Research Article

Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

1Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan
2Department of Mechanical Engineering, King Saud University, Riyadh 11451, Saudi Arabia

Received 21 September 2011; Revised 24 December 2011; Accepted 2 January 2012

Academic Editor: Angelo Luongo

Copyright © 2012 Sohail Nadeem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of a non-Newtonian fluid: applications to the vas deferens and small intestine,” Annals of Biomedical Engineering, vol. 13, no. 2, pp. 137–153, 1985. View at Google Scholar · View at Scopus
  2. S. Keshav, The Gastrointestinal System at a Glance, Wiley-Blackwell, Malden, Mass, USA, 2003.
  3. H. G. Beger, A. Schwarz, and U. Bergmann, “Progress in gastrointestinal tract surgery: the impact of gastrointestinal endoscopy,” Surgical Endoscopy and Other Interventional Techniques, vol. 17, no. 2, pp. 342–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. W. Latham, Fluid Motion in a Peristaltic Pump, M.S. thesis, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1966.
  5. S. Srinivas and R. Gayathri, “Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium,” Applied Mathematics and Computation, vol. 215, no. 1, pp. 185–196, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S. Srinivas, R. Gayathri, and M. Kothandapani, “The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport,” Computer Physics Communications, vol. 180, no. 11, pp. 2115–2122, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. M. Kothandapani and S. Srinivas, “Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel,” International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 915–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Srinivas and M. Kothandapani, “Peristaltic transport in an asymmetric channel with heat transfer. A note,” International Communications in Heat and Mass Transfer, vol. 35, no. 4, pp. 514–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. H. Sharpio, M. Y. Jaffrin, B. R. P. Rao, and S. I. Weinberg, “Peristaltic pumping with long wavelength and low Reynolds number,” Journal of Fluid Mechanics, vol. 37, no. 4, pp. 799–825, 1969. View at Google Scholar · View at Scopus
  10. S. Nadeem and N. S. Akbar, “Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope,” International Journal for Numerical Methods in Fluids, vol. 66, no. 2, pp. 212–220, 2011. View at Google Scholar
  11. S. Nadeem, N. S. Akbar, and M. Y. Malik, “Numerical solutions of peristaltic flow of a Newtonian fluid under the effects of magnetic field and heat transfer in a porous concentric tubes,” Zeitschrift fur Naturforschung A, vol. 65, no. 5, pp. 369–389, 2010. View at Google Scholar
  12. S. Nadeem and N. S. Akbar, “Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of a domain decomposition method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 3844–3855, 2009. View at Google Scholar
  13. S. Nadeem, T. Hayat, N. S. Akbar, and M. Y. Malik, “On the influence of heat transfer in peristalsis with variable viscosity,” International Journal of Heat and Mass Transfer, vol. 52, no. 21-22, pp. 4722–4730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. S. Lew, Y. C. Fung, and C. B. Lowenstein, “Peristaltic carrying and mixing of chyme in the small intestine,” Journal of Biomechanics, vol. 4, no. 4, pp. 297–315, 1971. View at Google Scholar · View at Scopus
  15. V. P. Srivastava, “Effects of an inserted endoscope on chyme movement in small intestine—a theoretical model,” Applications and Applied Mathematics, vol. 2, no. 2, pp. 79–91, 2007. View at Google Scholar · View at Zentralblatt MATH
  16. M. Saxena and V. P. Srivastava, “Particulate suspension flow induced by sinusoidal peristaltic waves,” Japanese Journal of Applied Physics, vol. 36, no. 1 A, pp. 385–390, 1997. View at Google Scholar · View at Scopus
  17. V. P. Srivastava and M. Saxena, “A two-fluid model of non-Newtonian blood flow induced by peristaltic waves,” Rheologica Acta, vol. 34, no. 4, pp. 406–414, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of blood: casson model. II,” Journal of Biomechanics, vol. 17, no. 11, pp. 821–829, 1984. View at Google Scholar · View at Scopus
  19. L. M. Srivastava, V. P. Srivastava, and S. N. Sinha, “Peristaltic transport of a physiological fluid: part I. Flow in non-uniform geometry,” Biorheology, vol. 20, no. 2, pp. 153–166, 1983. View at Google Scholar · View at Scopus
  20. P. B. Cotton and C. B. Williams, Practical Gastrointestinal Endoscopy, Oxford University Press, London, UK, 3rd edition, 1990.
  21. A. E. H. Abd El Naby and A. E. M. El Misiery, “Effects of an endoscope and generalized Newtonian fluid on peristaltic motion,” Applied Mathematics and Computation, vol. 128, no. 1, pp. 19–35, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. I. Dapra and G. Scarpi, “Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture,” International Journal of Rock Mechanics and Mining Sciences, vol. 44, no. 2, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishing Company, Boston, Mass, USA, 5th edition, 1985.