Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 628295, 15 pages
http://dx.doi.org/10.1155/2012/628295
Research Article

Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach

1School of Management, Harbin Institute of Technology, Harbin 150001, China
2Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Received 3 November 2012; Accepted 7 November 2012

Academic Editor: Peng Shi

Copyright © 2012 Haifeng Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, pp. 77–91, 1952. View at Google Scholar
  2. S. Zymler, B. Rustem, and D. Kuhn, “Robust portfolio optimization with derivative insurance guarantees,” European Journal of Operational Research, vol. 210, no. 2, pp. 410–424, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. R. Michaud, “The Markowitz optimization enigma: is “optimized” optimal?” Financial Analysts Journal, vol. 45, no. 1, pp. 31–42, 1989. View at Publisher · View at Google Scholar
  4. P. L. Leung, H. Y. Ng, and W. K. Wong, “An improved estimation to make Markowitz's portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment,” European Journal of Operational Research, vol. 222, no. 1, pp. 85–95, 2012. View at Publisher · View at Google Scholar
  5. R. Bhattacharyya, S. Kar, and D. D. Majumder, “Fuzzy mean-variance-skewness portfolio selection models by interval analysis,” Computers and Mathematics with Applications, vol. 61, no. 1, pp. 126–137, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. Q. Da and X. Liu, “Interval linear programming and optimization,” System Engineering Theory and Practice, vol. 4, pp. 3–7, 1999. View at Google Scholar
  7. G. Chen, S. Chen, and S. Wang, “Interval Fuzzy set investment portfolio,” System Engineering, vol. 25, pp. 34–37, 2007. View at Google Scholar
  8. X. Su, P. Shi, L. Wu, and Y. Song, “A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1114–1129, 2012. View at Publisher · View at Google Scholar
  9. X. Su, P. Shi, L. Wu, and Y. Song, “A novel control design on discrete-time takagi-sugeno fuzzy systems with time-varying Delays,” IEEE Transactions on Fuzzy Systems. In press. View at Publisher · View at Google Scholar
  10. M. Nafar, G. Gharehpetian, and T. Niknam, “Using modified fuzzy particle swarm optimization algorithm for parameter estimation of surge arresters models,” International Journal of Innovative Computing Information Control, vol. 8, no. 1 B, pp. 567–581, 2012. View at Google Scholar
  11. T. Chen, “A hybrid fuzzy and neural approach with virtual experts and partial consensus for dram price forecasting,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 1 B, pp. 583–597, 2012. View at Google Scholar
  12. L. Wu, X. Su, P. Shi, and J. Qiu, “Model approximation for discrete-time state-delay systems in the TS fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Aghaei, “Fuzzy multi-objective optimal power flow considering UPFC,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 2, pp. 1155–1166, 2012. View at Google Scholar
  14. L. Wu and W. X. Zheng, “L2-L∞ control of nonlinear fuzzy itô stochastic delay systems via dynamic output feedback,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 5, pp. 1308–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. V. Pham, T. Cao, I. Nakaoka, E. W. Cooper, and K. Kamei, “A proposal of hybrid kansei-som model for stock market investment,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 5 B, pp. 2863–2880, 2011. View at Google Scholar · View at Scopus
  16. H. V. Pham, T. Cao, I. Nakaora, J. Kushioda, E. W. Copper, and K. Kamei, “A group decision support system using hybrid Kansei-SOM model for stock market investment strategies and its application,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7 A, pp. 3659–3678, 2011. View at Google Scholar · View at Scopus
  17. L. Wu and D. W. C. Ho, “Fuzzy filter design for Itô stochastic systems with application to sensor fault detection,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 233–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Guo, R. Brooks, and R. Shami, “Detecting hot and cold cycles using a Markov regime switching model-evidence from the Chinese A-share IPO market,” International Review of Economics and Finance, vol. 19, no. 2, pp. 196–210, 2010. View at Publisher · View at Google Scholar · View at Scopus