Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 635631, 9 pages
http://dx.doi.org/10.1155/2012/635631
Research Article

Real-Time Simulation of Fluid Scenes by Smoothed Particle Hydrodynamics and Marching Cubes

1College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China
2State Key Laboratory of Software Development Environment, Beijing 100083, China

Received 2 August 2012; Accepted 26 September 2012

Academic Editor: Fei Kang

Copyright © 2012 Weihong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Carlini and S. Castellucci, “Modelling and simulation for energy production parametric dependence in greenhouses,” Mathematical Problems in Engineering, vol. 2010, Article ID 590943, 28 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Carlo Cattani, Shengyong Chen, and Gani Aldashev, “Information and Modeling in Complexity,” Mathematical Problems in Engineering, vol. 2012, Article ID 868413, 4 pages, 2012. View at Publisher · View at Google Scholar
  4. S. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in Engineering, vol. 2012, Article ID 814356, 18 pages, 2012. View at Publisher · View at Google Scholar
  5. Y. Liu, X. Liu, H. Zhu, and E. Wu, “Physically based fluid simulation in computer animation,” Journal of Computer-Aided Design and Computer Graphics, vol. 17, no. 12, pp. 2581–2589, 2005. View at Google Scholar · View at Scopus
  6. J. Stam and E. Fiume, “Depicting fire and other gaseous phenomena using diffusion processes,” in Proceedings of the 22nd Annual ACM Conference on Computer Graphics and Interactive Techniques, pp. 129–135, Los Angeles, Calif, USA, August 1995. View at Scopus
  7. T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle hydrodynamics on GPU,” in Proceedings of The Computer Graphics International, pp. 63–70, Rio de Janeiro, Brazil, 2007.
  8. A. Grahn, “Interactive simulation of contrast fluid using smoothed particle,” Hydrodynamics, pp. 1–69, 2008. View at Google Scholar
  9. A. Kolb and N. Cuntz, “Dynamic particle coupling for GPU based fluid simulation,” in Proceedings of the 18th Symposium on Simulation Technique, pp. 722–727, Erlangen, Germany, 2005.
  10. D. Lopez, R. Marivela, and F. Aranda, “SPH model calibration using data from pressure of the prototype still basin of Villar Del Rey Dam, Spain,” in Proceedings of the 33rd IAHR Congress, Water Engineering for a Sustainable Environment, pp. 187–198, 2009.
  11. S. Y. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4409–4420, 2012. View at Publisher · View at Google Scholar
  12. P. Kipfer and R. Westermann, “Realistic and interactive simulation of rivers,” in Proceedings of the 32nd Annual Conference on Computer Graphics (SIGGRAPH '06), pp. 1–8, New York, NY, USA, June 2006. View at Scopus
  13. S. Chen, Y. Wang, and C. Cattani, “Key issues in modeling of complex 3D structures from video sequences,” Mathematical Problems in Engineering, vol. 2012, Article ID 856523, 17 pages, 2012. View at Publisher · View at Google Scholar
  14. X. Chen, Z. Wang, J. He, H. Yan, and Q. Peng, “An integrated algorithm of real-time fluid simulation on GPU,” Journal of Computer-Aided Design and Computer Graphics, vol. 22, no. 3, pp. 396–405, 2010. View at Google Scholar · View at Scopus
  15. K. Iwasaki, Y. Dobashi, F. Yoshimoto, and T. Nishita, “Real-time rendering of point based water surfaces,” Advances in Computer Graphics, vol. 4035, pp. 102–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Cattani, “Shannon wavelets for the solution of integro-differential equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 408418, 22 pages, 2010. View at Publisher · View at Google Scholar
  17. E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. Chen and Z. J. Wang, “Acceleration strategies in generalized belief propagation,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 41–48, 2012. View at Publisher · View at Google Scholar
  19. N. M. Kwok, X. Jia et al., “Visual impact enhancement via image histogram smoothing and continuous intensity relocation,” Computers & Electrical Engineering, vol. 37, no. 5, pp. 681–694, 2011. View at Publisher · View at Google Scholar
  20. S. C. Lim, C. H. Eab, K. H. Mak, M. Li, and S. Y. Chen, “Solving linear coupled fractional differential equations by direct operational method and some applications,” Mathematical Problems in Engineering, vol. 2012, Article ID 653939, 28 pages, 2012. View at Publisher · View at Google Scholar