Abstract

We consider a class of impulsive neutral second-order stochastic functional evolution equations. The Sadovskii fixed point theorem and the theory of strongly continuous cosine families of operators are used to investigate the sufficient conditions for the controllability of the system considered. An example is provided to illustrate our results.

1. Introduction

Controllability, as a fundamental concept of control theory, plays an important role both in stochastic and deterministic control problems. The study of controllability of linear and nonlinear systems represented by infinite-dimensional systems in Banach spaces has been raised by many authors recently, see Chang [1], Sakthivel [2], Ren and Sakthivel [3], Ntouyas and Regan [4], Kang et al. [5], Sakthivel and Mahmudov [6], and Shubov et al. [7]. With the help of fixed point theorem, Luo [8, 9] and Burton [10–13] have investigated the problem of controllability of the systems in Banach spaces.

Recently, stochastic partial differential equations (SPDEs) arise in the mathematical modeling of various fields in physics and engineering science cited by Sobczyk [14]. Among them, several properties of SPDEs such as existence, controllability, and stability are studied for the first-order equations. But in many situations, it is useful to investigate the second-order abstract differential equations directly rather than to convert them to first-order systems introduced by Fitzgibbon [15]. The second-order stochastic differential equations are the right model in continuous time to account for integrated processes that can be made stationary. For instance, it is useful for engineers to model mechanical vibrations or charge on a capacitor or condenser subjected to white noise excitation by second-order stochastic differential equations. A useful tool for the study of abstract second-order equations is the fixed point theory and the theory of strongly continuous cosine families.

In the past decades, the theory of impulsive differential equations or inclusions is emerging as an active area of investigation due to the application in area such as mechanics, electrical engineering, medicine biology, and ecology, see Benchohra and Henderson [16], Liu and Willms [17], HernΓ‘ndez et al. [18], Prato and Zabczyk [19], and Fattorini [20]. As an adequate model, impulsive differential equations are used to study the evolution of processes that are subject to sudden changes in their states.

The focus of this paper is the controllability of mild solutions for a class of impulsive neutral second-order stochastic evolution equations of the form: 𝑑π‘₯ξ…žξ€·π‘₯(𝑑)βˆ’π·π‘‘=𝐴π‘₯(𝑑)+𝐡𝑒(𝑑)+𝑓𝑑,π‘₯𝑑𝑑𝑑+𝑔𝑑,π‘₯𝑑[]𝑑𝑀(𝑑),π‘‘βˆˆ0,𝑇,π‘‘β‰ π‘‘π‘˜ξ€·π‘‘Ξ”π‘₯π‘˜ξ€Έ=πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜ξ€Έξ€Έ,Ξ”π‘₯ξ…žξ€·π‘‘π‘˜ξ€Έ=ξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜ξ€Έξ€Έ,π‘˜=1,…,𝑛,π‘₯(0)=πœ™,π‘₯β€²(0)=𝑦0.(1.1) Here, π‘₯(β‹…) is a stochastic process taking values in a real separable Hilbert space H with inner product (β‹…,β‹…) and norm β€–β‹…β€–. 𝐴∢𝐷(𝐴)βŠ‚π»β†’π» is the infinitesimal generator of a strongly continuous cosine family on H. W is a given K-valued Wiener process with a finite trace nuclear covariance operator Q β‰₯ 0 defined on a filtered complete probability space (Ξ©,𝐹,{𝐹𝑑}𝑑β‰₯0,𝑃) and K is another separable Hilbert space with inner product (β‹…,β‹…)𝐾 and norm ‖⋅‖𝐾. The fixed time π‘‘π‘˜,π‘˜=1,…,𝑛, satisfies 0<𝑑1<β‹―<𝑑𝑛<𝑇, π‘₯(𝑑+π‘˜) and π‘₯(π‘‘βˆ’π‘˜) denote the right and left limits of π‘₯(𝑑) at 𝑑=π‘‘π‘˜, and Ξ”π‘₯(π‘‘π‘˜)=π‘₯(𝑑+π‘˜)βˆ’π‘₯(π‘‘βˆ’π‘˜) represents the jump in the state x at time π‘‘π‘˜, where πΌπ‘˜βˆˆπΆ(𝐻,𝐻)(π‘˜=1,1,2,…,π‘š) are bounded which determine the size of the jump. Similarly π‘₯ξ…ž(𝑑+π‘˜) and π‘₯ξ…ž(π‘‘βˆ’π‘˜) denote, respectively, the right and left limits of π‘₯ξ…ž at π‘‘π‘˜. f, B, g are appropriate mappings specified later; π‘₯0 and 𝑦0 are 𝐹0-measurable random variables with finite second moment. The main contributions are as follows. The Sadovskii fixed point theorem and the theory of strongly continuous cosine families of operators are used to investigate the sufficient conditions for the controllability of the system considered. The differences of using the fixed point theorem between our proposed method and others are that Sadovskii fixed point theorem is much easier in application, and the condition is easier to be satisfied than other fixed point theorem. To our best knowledge, there are few works about the controllability for mild solutions to second-order semilinear impulsive stochastic neutral functional evolution equations, motivated by the previous problems, our current consideration is on second-order semilinear impulsive stochastic neutral functional evolution equations. We will apply the Sadovskii fixed point theorem to investigate the controllability of mild solution of this class of equations.

The rest of this paper is arranged as follows. In Section 2, we briefly present some basic notations and preliminaries. Section 3 is devoted to the controllability of mild solutions for the system (1.1) and an example is given to illustrate our results in Section 4. Conclusion is given in Section 5.

2. Preliminaries

In this section, we briefly recall some basic definitions and results for stochastic equations in infinite dimensions and cosine families of operators. We refer to Prato and Zabczyk [19] and Fattorini [20] for more details. Throughout this paper, let L(K,H) be the set of all linear bounded operators from K into H, equipped with the usual operator norm β€–β‹…β€–. Let (Ξ©,𝐹,𝑃) be a complete probability space furnished with a normal filtration{𝐹𝑑}𝑑β‰₯0. Suppose {π›½π‘˜}π‘˜β‰₯1 is a sequence of real independent one-dimensional standard Brownian motions over (Ξ©,𝐹,𝑃). Set π‘Š(𝑑)=βˆžξ“π‘˜=1βˆšπœ†π‘˜π›½π‘˜(𝑑)π‘’π‘˜,𝑑β‰₯0,(2.1) where {π‘’π‘˜}π‘˜β‰₯1 is the complete orthonormal system in K and πœ†π‘˜,π‘˜β‰₯1, a bounded sequence of nonnegative real numbers. Let Q ∈ L(K, K) be an operator defined by π‘„π‘’π‘˜=πœ†π‘˜π‘’π‘˜,π‘˜=1,2,…, with βˆ‘tr𝑄=βˆžπ‘˜=1πœ†π‘˜<∞. The K-valued stochastic process π‘Š=(π‘Šπ‘‘)𝑑β‰₯0 is called a Q-Wiener process. Let 𝐿02=𝐿2(𝑄1/2𝐾,𝐻) be the space of all Hilbert-Schmidt operators from 𝑄1/2𝐾 to H with the inner product βŸ¨πœ‘,πœ™βŸ©πΏ02=tr[πœ‘π‘„πœ™βˆ—].

The collection of all strongly measurable, square-integrable H-valued random variables, denoted by 𝐿2(Ξ©,𝐻), is a Banach space equipped with norm β€–π‘₯‖𝐿2=(𝐸‖π‘₯β€–2)1/2. An important subspace of 𝐿2(Ξ©,𝐻) is given by 𝐿20𝐿(Ξ©,𝐻)=2(Ξ©,𝐻)βˆ‹π‘₯is𝐹0ξ€Ύ.βˆ’measurable(2.2)

Let []=[]β„˜βˆΆ=𝐷(0,𝑇,𝐻)π‘₯∢0,𝑇→𝐻,π‘₯|(π‘‘π‘˜,π‘‘π‘˜+1]π‘‘βˆˆπΆξ€·ξ€·π‘˜,π‘‘π‘˜+1𝑑,𝐻,andthereexistsπ‘₯+π‘˜ξ€Έξ‚‡,forπ‘˜=1,2,…,π‘›β„˜βˆΆ=[]=𝐷(0,𝑇,𝐻)π‘₯βˆˆβ„˜,π‘₯|(π‘‘π‘˜,π‘‘π‘˜+1]∈𝐢1π‘‘ξ€·ξ€·π‘˜,π‘‘π‘˜+1ξ€»ξ€Έ,𝐻,andthereexistsπ‘₯ξ…žξ€·π‘‘+π‘˜ξ€Έξ‚‡.forπ‘˜=1,2,…,𝑛(2.3) It is obvious that 𝐷([0,𝑇],𝐻) and 𝐷([0,𝑇],𝐻) are Banach spaces endowed with the norm β€–π‘₯β€–β„˜=sup[]π‘‘βˆˆ0,𝑇𝐸‖π‘₯(𝑑)β€–2ξƒͺ1/2(2.4) and β€–π‘₯β€–β„˜=β€–π‘₯β€–β„˜+β€–π‘₯β€²β€–β„˜, respectively.

To simplify the notations, we put 𝑑0=0, π‘‘π‘š+1=𝑇, and for 𝑒=𝐻2, we denote by Μƒπ‘’π‘˜βˆˆπΆ([π‘‘π‘˜,π‘‘π‘˜+1],𝐿2(Ξ©,𝐻)), π‘˜=0,1,…,π‘š, the function given by Μƒπ‘’π‘˜ξ‚»π‘’ξ€·π‘‘(𝑑)=(𝑑),π‘‘βˆˆπ‘˜,π‘‘π‘˜+1ξ€»,𝑒𝑑+π‘˜ξ€Έ,𝑑=π‘‘π‘˜.(2.5) Moreover, for π΅βŠ‚π»2 we denote ξ‚π΅π‘˜={Μƒπ‘’π‘˜βˆΆπ‘’βˆˆπ΅},π‘˜=1,…,π‘š. To prove our results, we need the following lemma introduced in HernΓ‘ndez et al. [18].

Lemma 2.1. A set π΅βŠ‚β„˜ is relatively compact in β„˜ if and only if the set ξ‚π΅π‘˜ is relatively compact in 𝐢([π‘‘π‘˜,π‘‘π‘˜+1],𝐻), for every π‘˜=0,1,…,π‘š.

Now, we recall some facts about cosine families of operators, see Fattorini [20] and Travis and Webb [21].

Definition 2.2. (1) The one-parameter family {𝐢(𝑑)βˆΆπ‘‘βˆˆβ„}βŠ‚πΏ(𝐻,𝐻) is said to be a strongly continuous cosine family if the following hold:(1)𝐢(0)=𝐼;(2)C(t)x is continuous in t on ℝ for any π‘₯∈𝐻;(3)𝐢(𝑑+𝑠)+𝐢(π‘‘βˆ’π‘ )=2𝐢(𝑑)𝐢(𝑠) for all 𝑑,π‘ βˆˆβ„.
(2) The corresponding strongly continuous sine family {𝑆(𝑑):π‘‘βˆˆβ„}βŠ‚πΏ(𝐻,𝐻) is defined by ξ€œπ‘†(𝑑)π‘₯=𝑑0𝐢(𝑠)π‘₯𝑑𝑠,π‘‘βˆˆβ„,π‘₯∈𝐻.(2.6)
(3) The (infinitesimal) generator π΄βˆΆπ»β†’π» of {𝐢(𝑑):π‘‘βˆˆπ‘…} is given by 𝑑𝐴π‘₯=2𝑑𝑑2𝐢||||(𝑑)π‘₯𝑑=0,(2.7) for all π‘₯∈𝐷(𝐴)={π‘₯∈𝐻∢𝐢(β‹…)π‘₯∈𝐢2(ℝ,𝐻)}.

It is known that the infinitesimal generator A is a closed, densely defined operator on H, and the following properties hold, see Travis and Webb [21].

Proposition 2.3. Suppose that A is the infinitesimal generator of a cosine family of operators {𝐢(𝑑)βˆΆπ‘‘βˆˆβ„}. Then, the following hold(i)There exist a pair of constants 𝑀𝐴β‰₯1 and 𝛼β‰₯0 such that ‖𝐢(𝑑)‖≀𝑀𝐴𝑒𝛼|𝑑| and hence, ‖𝑆(𝑑)‖≀𝑀𝐴𝑒𝛼|𝑑|.(ii)π΄βˆ«π‘Ÿπ‘ π‘†(𝑒)π‘₯𝑑𝑒=[𝐢(π‘Ÿ)βˆ’πΆ(𝑠)]π‘₯, for all 0β‰€π‘ β‰€π‘Ÿ<∞.(iii)There exist 𝑁β‰₯1 such that βˆ«β€–π‘†(𝑠)βˆ’π‘†(π‘Ÿ)‖≀𝑁|π‘Ÿπ‘ π‘’π›Ό|𝑠|𝑑𝑠|, for all 0β‰€π‘ β‰€π‘Ÿ<∞.The uniform boundedness principle: as a direct consequence we see that both {𝐢(𝑑)βˆΆπ‘‘βˆˆ[0,𝑇]} and {𝑆(𝑑)βˆΆπ‘‘βˆˆ[0,𝑇]} are uniformly bounded by π‘€βˆ—=𝑀𝐴𝑒𝛼|𝑇|.

At the end of this section we recall the fixed point theorem of Sadovskii [22] which is used to estimate the controllability of the mild solution to the system (1.1).

Lemma 2.4. Let Ξ¦ be a condensing operator on a Banach space H. If Ξ¦(𝑁)βŠ‚π‘ for a convex, closed, and bounded set N of H, then Ξ¦ has a fixed point in H.

3. Main Results

In this section we consider the system (1.1). We first present the definition of mild solutions for the system.

Definition 3.1. An πΉπ‘‘βˆ’adapted stochastic process π‘₯(𝑑)∢[0,𝑇]→𝐻 is said to be a mild solution of the system (1.1) if(1)π‘₯0,𝑦0∈𝐿20(Ξ©,𝐻);(2)Ξ”π‘₯(π‘‘π‘˜)=π‘₯(𝑑+π‘˜)βˆ’π‘₯(π‘‘βˆ’π‘˜)=πΌπ‘˜(π‘₯(π‘‘π‘˜)), Ξ”π‘₯β€²(π‘‘π‘˜)=π‘₯β€²(𝑑+π‘˜)βˆ’π‘₯β€²(π‘‘βˆ’π‘˜ξ‚πΌ)=π‘˜(π‘₯(π‘‘π‘˜)), π‘˜=1,…,𝑛;(3)π‘₯(𝑑) satisfies the following integral equation: 𝑦π‘₯(𝑑)=𝐢(𝑑)πœ™(0)+𝑆(𝑑)0ξ€»+ξ€œβˆ’π·(0,πœ™)𝑑0𝐢(π‘‘βˆ’π‘ )𝐷𝑠,π‘₯𝑠+ξ€œπ‘‘π‘ π‘‘0ξ€œπ‘†(π‘‘βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠+𝑑0𝑆(π‘‘βˆ’π‘ )𝑓𝑠,π‘₯𝑠+ξ€œπ‘‘π‘ π‘‘0𝑆(π‘‘βˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έξ“π‘‘π‘Š(𝑠)+0<π‘‘π‘˜<π‘‘πΆξ€·π‘‘βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜+0<π‘‘π‘˜<π‘‘π‘†ξ€·π‘‘βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜.ξ€Έξ€Έ(3.1)
In this paper, we will work under the following assumptions.(A1) The cosine family of operators {𝐢(𝑑)βˆΆπ‘‘βˆˆ[0,𝑇]} on H and the corresponding sine family {𝑆(𝑑):π‘‘βˆˆ[0,𝑇]} are compact for t > 0, and there exists a positive constant M such that ‖𝐢(𝑑)‖≀𝑀,‖𝑆(𝑑)‖≀𝑀.(3.2)(A2)𝐷,𝑓,𝑔 are continuous functions, and there exist some positive constants 𝑀𝐷,𝑀𝑓,𝑀𝑔, such that 𝐷,𝑓,𝑔 satisfy the following Lipschitz condition: ‖𝐷(𝑑,πœ‘)βˆ’π·(𝑑,πœ™)β€–β‰€π‘€π·β€–πœ‘βˆ’πœ™β€–,‖𝑓(𝑑,πœ‘)βˆ’π‘“(𝑑,πœ™)β€–β‰€π‘€π‘“β€–πœ‘βˆ’πœ™β€–,‖𝑔(𝑑,πœ‘)βˆ’π‘”(𝑑,πœ™)β€–β‰€π‘€π‘”β€–πœ‘βˆ’πœ™β€–,(3.3) for all πœ‘,πœ™βˆˆπ»,π‘˜=1,…,𝑛 and π‘‘βˆˆ[0,𝑇], and there exist positive constants 𝑀𝐷,𝑀𝑓,𝑀𝑔 that satisfy the following linear growth condition: (‖𝐷𝑑,πœ‘)β€–2β‰€π‘€π·ξ€·β€–πœ‘β€–2ξ€Έ,(+1‖𝑓𝑑,πœ‘)β€–2β‰€π‘€π‘“ξ€·β€–πœ‘β€–2ξ€Έ,(+1‖𝑔𝑑,πœ‘)β€–2β‰€π‘€π‘”ξ€·β€–πœ‘β€–2ξ€Έ+1(3.4) for all πœ‘,πœ™βˆˆπ»,π‘˜=1,…,𝑛 and π‘‘βˆˆ[0,𝑇].(A3)πΌπ‘˜,ξ‚πΌπ‘˜βˆΆπ»β†’π» are continuous and there exist positive constants π‘€π‘˜, π‘π‘˜ such that β€–β€–πΌπ‘˜(π‘₯)βˆ’πΌπ‘˜β€–β€–(𝑦)β‰€π‘€π‘˜β€–π‘₯βˆ’π‘¦β€–2,β€–β€–ξ‚πΌπ‘˜ξ‚πΌ(π‘₯)βˆ’π‘˜β€–β€–(𝑦)β‰€π‘π‘˜β€–π‘₯βˆ’π‘¦β€–2(3.5) for each π‘₯,π‘¦βˆˆπ»,π‘˜=1,…,𝑛.(A4)𝐡 is a continuous operator from Ξ© to 𝐻 and the linear operator π‘ŠβˆΆπΏ20(Ξ©,𝐻)→𝑋 defined by ξ€œπ‘Šπ‘’=𝑇0𝑆(π‘‡βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠(3.6) has a bounded invertible operator π‘Šβˆ’1 which takes values in 𝐿20(Ξ©,𝐻)/kerπ‘Š such that ||𝐡||≀𝑀1,||π‘Šβˆ’1||≀𝑀2, for some positive constants 𝑀1,𝑀2.

We formulate and prove conditions for the approximate controllability of semilinear control differential systems

Theorem 3.2. Assume that (A1)–(A4) are satisfied and π‘₯0,𝑦0∈𝐿20(Ξ©,𝐻), then the system (1.1) is controllable on [0,𝑇] provided that 8𝑀2𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜+8𝑀2𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜ξƒͺξƒ­<1.(3.7)

Proof. Define the control process with final value πœ‰=π‘₯(𝑇)𝑒𝑇π‘₯(𝑑)=π‘Šβˆ’1⎧βŽͺ⎨βŽͺβŽ©ξ€Ίπ‘¦πœ‰βˆ’π‘†(𝑇)0ξ€»ξ€œβˆ’π·(0,πœ™)βˆ’πΆ(𝑇)πœ™(0)βˆ’π‘‡0𝐢(π‘‡βˆ’π‘ )𝐷𝑠,π‘₯π‘ ξ€Έβˆ’ξ€œπ‘‘π‘ π‘‡0𝑆(π‘‡βˆ’π‘ )𝑓𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘ βˆ’π‘‡0𝑆(π‘‡βˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έβˆ’ξ“π‘‘π‘Š(𝑠)0<π‘‘π‘˜<π‘‘πΆξ€·π‘‡βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜βˆ’ξ“ξ€Έξ€Έ0<π‘‘π‘˜<π‘‘π‘†ξ€·π‘‡βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜βŽ«βŽͺ⎬βŽͺ⎭(𝑑).(3.8) Let 𝐡𝑁={π‘₯∈𝐻2βˆΆβ€–π‘₯β€–2β„˜β‰€π‘}, for every positive integer N. It is clear that 𝐡𝑁 is a bounded closed convex set in 𝐻2 for each N. Define an operator πœ‹βˆΆπ»2→𝐻2 by (ξ€Ίπ‘¦πœ‹π‘₯)(𝑑)=𝐢(𝑑)πœ™(0)+𝑆(𝑑)0ξ€»+ξ€œβˆ’π·(0,πœ™)𝑑0𝐢(π‘‘βˆ’π‘ )𝐷𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘ +𝑑0+ξ€œπ‘†(π‘‘βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠𝑑0𝑆(π‘‘βˆ’π‘ )𝑓𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘ +𝑑0𝑆(π‘‘βˆ’π‘ )𝑔𝑠,π‘₯𝑠+ξ“π‘‘π‘Š(𝑠)0<π‘‘π‘˜<π‘‘πΆξ€·π‘‘βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜+0<π‘‘π‘˜<π‘‘π‘†ξ€·π‘‘βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜.ξ€Έξ€Έ(3.9) Now let us show that Ο€ has a fixed point in 𝐻2 which is a solution of (1.1) by Lemma 2.4. This will be done in the next lemmas.

Lemma 3.3. There exists a positive integer N such that πœ‹(𝐡𝑁)βŠ‚π΅π‘.

Proof. This proof can be done by contradiction. In fact, if it is not true, then for each positive number N and π‘‘π‘βˆˆ[0,𝑇], there exists a function π‘₯π‘βˆˆπ΅π‘, but πœ‹(π‘₯𝑁)(𝑑𝑁)βˆ‰π΅π‘. That is, πΈβ€–πœ‹(π‘₯𝑁)(𝑑𝑁)β€–2>𝑁. By applying assumptions (A1)–(A4) one can obtain the following estimates: 𝐸‖‖‖‖0<π‘‘π‘˜<π‘‘π‘π‘†ξ€·π‘‘π‘βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜β€–β€–β€–β€–ξ€Έξ€Έ2≀𝑁𝑀20<π‘‘π‘˜<π‘‡πΈβ€–β€–ξ‚πΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜βˆ’ξ‚πΌξ€Έξ€Έπ‘˜ξ‚πΌ(0)+π‘˜β€–β€–(0)≀2𝑁𝑀2ξƒ©π‘ξ“π‘˜=1π‘π‘˜πΈβ€–β€–π‘₯π‘ξ€·π‘‘π‘˜ξ€Έβ€–β€–2+π‘ξ“π‘˜=1β€–β€–ξ‚πΌπ‘˜(β€–β€–0)2ξƒͺ,𝐸‖‖‖‖(3.10)0<π‘‘π‘˜<π‘‘π‘πΆξ€·π‘‘π‘βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜β€–β€–β€–β€–ξ€Έξ€Έ2≀𝑁𝑀20<π‘‘π‘˜<π‘‡πΈβ€–β€–πΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜ξ€Έξ€Έβˆ’πΌπ‘˜(0)+πΌπ‘˜β€–β€–(0)≀2𝑁𝑀2ξƒ©π‘ξ“π‘˜=1π‘€π‘˜πΈβ€–β€–π‘₯π‘ξ€·π‘‘π‘˜ξ€Έβ€–β€–2+π‘ξ“π‘˜=1β€–β€–πΌπ‘˜(β€–β€–0)2ξƒͺ,πΈβ€–β€–β€–β€–ξ€œ(3.11)𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έπ‘”ξ€·βˆ’π‘ π‘ ,π‘₯π‘ ξ€Έβ€–β€–β€–β€–π‘‘π‘Š(𝑠)2≀tr(𝑄)𝑀2ξ€œπ‘‘π‘0𝐸‖‖𝑔𝑠,π‘₯𝑠‖‖2𝑑𝑠≀tr(𝑄)𝑀2𝑀2π‘”ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€ΈπΈβ€–β€–β€–β€–ξ€œ+1𝑑𝑠,(3.12)𝑑𝑁0𝐢𝑑𝑁𝐷π‘₯βˆ’π‘ π‘ ξ€Έβ€–β€–β€–β€–π‘‘π‘ 2≀𝑇𝑀2𝑀2π·ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€ΈπΈβ€–β€–β€–β€–ξ€œ+1𝑑𝑠,(3.13)𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έπ‘“ξ€·βˆ’π‘ π‘ ,π‘₯𝑠‖‖‖‖𝑑𝑠2≀𝑇𝑀2𝑀2π‘“ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€ΈπΈβ€–β€–β€–β€–ξ€œ+1𝑑𝑠,(3.14)𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έβ€–β€–β€–β€–βˆ’π‘ π΅π‘’(𝑠)𝑑𝑠2≀8𝑀2𝑀2ξƒ©β€–πœ‰β€–2+β€–πœ‘(0)β€–2+𝑦20+(𝑇+1)𝑀2π·ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€Έ+1𝑑𝑠+𝑇𝑀2π‘“ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€Έ++1𝑑𝑠𝑀2π‘”ξ€œπ‘‘π‘0πΈξ€·β€–πœ‘β€–2ξ€Έ+1𝑑𝑠+2π‘π‘ξ“π‘˜=1π‘π‘˜πΈβ€–β€–π‘₯π‘ξ€·π‘‘π‘˜ξ€Έβ€–β€–2+2π‘π‘ξ“π‘˜=1π‘€π‘˜πΈβ€–β€–π‘₯π‘ξ€·π‘‘π‘˜ξ€Έβ€–β€–2ξƒͺ∢=𝑀2π‘ˆ(3.15) which gives β€–β€–ξ€·π‘β‰€πΈπœ‹π‘₯𝑁𝑑𝑁‖‖2‖‖𝐢𝑑≀8𝐸𝑁[]β€–β€–πœ‘(0)2‖‖𝑆𝑑+8𝐸𝑁𝑦0ξ€»β€–β€–βˆ’π·(0,πœ‘)2β€–β€–β€–β€–ξ€œ+8𝐸𝑑𝑁0πΆξ€·π‘‘π‘ξ€Έπ·β€–β€–β€–β€–βˆ’π‘ (𝑠,πœ‘)𝑑𝑠2β€–β€–β€–β€–ξ€œ+8𝐸𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έπ‘“β€–β€–β€–β€–βˆ’π‘ (𝑠,πœ‘)𝑑𝑠2β€–β€–β€–β€–ξ€œ+8𝐸𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έβ€–β€–β€–β€–βˆ’π‘ π‘”(𝑠,πœ‘)π‘‘π‘Š(𝑠)2‖‖‖‖+8𝐸0<π‘‘π‘˜<π‘‘π‘πΆξ€·π‘‘π‘βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜β€–β€–β€–β€–ξ€Έξ€Έ2‖‖‖‖+8𝐸0<π‘‘π‘˜<π‘‘π‘π‘†ξ€·π‘‘π‘βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯π‘ξ€·π‘‘π‘˜β€–β€–β€–β€–ξ€Έξ€Έ2β€–β€–β€–β€–ξ€œ+8𝐸𝑑𝑁0π‘†ξ€·π‘‘π‘ξ€Έβ€–β€–β€–β€–βˆ’π‘ π΅π‘’(𝑠)𝑑𝑠2≀𝐿+8𝑀2𝑇𝑀2𝐷𝑁+𝑇𝑀2𝑓𝑁+tr(𝑄)𝑀2𝑔𝑁+2𝑁𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑁𝑀2π‘›ξ“π‘˜=1π‘π‘˜+8𝑀2𝑇𝑀2𝐷𝑁+𝑇𝑀2𝑓𝑁+tr(𝑄)𝑀2𝑔𝑁+2𝑁𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑁𝑀2π‘›ξ“π‘˜=1π‘π‘˜,ξƒͺξƒ­(3.16) where 𝐿=8𝑀2𝐸‖‖π‘₯0β€–β€–2‖‖𝑦+𝐸0β€–β€–2+𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜+8𝑀2𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜.ξƒͺξƒ­(3.17) Dividing both sides of (3.16) by N and taking limit as π‘β†’βˆž, we obtain that 8𝑀2𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜+8𝑀2𝑇𝑀2𝐷+𝑇𝑀2𝑓+tr(𝑄)𝑀2𝑔+2𝑀2π‘›ξ“π‘˜=1π‘€π‘˜+2𝑀2π‘›ξ“π‘˜=1π‘π‘˜ξƒͺξƒ­β‰₯1(3.18) which is a contradiction by (3.7). Thus, πœ‹(𝐡𝑁)βŠ‚π΅π‘, for some positive number N.
In what follows, we aim to show that the operator Ο€ has a fixed point on 𝐡𝑁, which implies that (1.1) is controllable. To this end, we decompose Ο€ as follows: πœ‹=πœ‹1+πœ‹2,(3.19) where πœ‹1, πœ‹2 are defined on 𝐡𝑁, respectively, by ξ€·πœ‹1π‘₯ξ€Έ(𝑦𝑑)=𝑆(𝑑)0ξ€»+ξ€œβˆ’π·(0,πœ‘)𝑑0ξ€œπΆ(π‘‘βˆ’π‘ )𝐷(0,πœ‘)𝑑𝑠+𝑑0𝑆(π‘‘βˆ’π‘ )𝑓𝑠,π‘₯𝑠+𝑑𝑠0<π‘‘π‘˜<π‘‘πΆξ€·π‘‘βˆ’π‘‘π‘˜ξ€ΈπΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜+0<π‘‘π‘˜<π‘‘π‘†ξ€·π‘‘βˆ’π‘‘π‘˜ξ€Έξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜,ξ€·πœ‹ξ€Έξ€Έ(3.20)2π‘₯ξ€Έξ€œ(𝑑)=𝐢(𝑑)πœ™(0)+𝑑0𝑆(π‘‘βˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘Š(𝑠)+𝑑0𝑆(π‘‘βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠.(3.21)

Lemma 3.4. The operator Ο€1 as above is contractive.

Proof. Let π‘₯,π‘¦βˆˆπ΅π‘. It follows from assumptions (A1)–(A4) and HΓΆlder’s inequality that πΈβ€–β€–ξ€·πœ‹1π‘₯ξ€Έξ€·πœ‹(𝑑)βˆ’1𝑦‖‖(𝑑)2[]‖≀5𝐸‖𝑆(𝑑)𝐷(0,πœ‘)βˆ’π·(0,πœ™)2β€–β€–β€–ξ€œ+5𝐸𝑑0[]‖‖‖𝐢(π‘‘βˆ’π‘ )𝐷(0,πœ‘)βˆ’π·(0,πœ™)𝑑𝑠2β€–β€–β€–ξ€œ+5𝐸𝑑0[]‖‖‖𝑆(π‘‘βˆ’π‘ )𝑓(𝑠,πœ‘)βˆ’π‘“(𝑠,πœ™)𝑑𝑠2‖‖‖‖+5𝐸0<π‘‘π‘˜<π‘‘πΆξ€·π‘‘βˆ’π‘‘π‘˜πΌξ€Έξ€Ίπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜ξ€Έξ€Έβˆ’πΌπ‘˜ξ€·π‘¦ξ€·π‘‘π‘˜β€–β€–β€–β€–ξ€Έξ€Έξ€»2‖‖‖‖+5𝐸0<π‘‘π‘˜<π‘‘π‘†ξ€·π‘‘βˆ’π‘‘π‘˜ξ€Έξ‚ƒξ‚πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜βˆ’ξ‚πΌξ€Έξ€Έπ‘˜ξ€·π‘¦ξ€·π‘‘π‘˜ξ‚„β€–β€–β€–β€–ξ€Έξ€Έ2≀5𝑀2𝑀2𝐷sup[]π‘ βˆˆ0,𝑇𝐸‖π‘₯(𝑠)βˆ’π‘¦(𝑠)β€–2+5𝑇𝑀2𝑀2𝐷sup[]π‘ βˆˆ0,𝑇𝐸‖π‘₯(𝑠)βˆ’π‘¦(𝑠)β€–2+5𝑇𝑀2𝑀2𝑓sup[]π‘ βˆˆ0,𝑇𝐸‖‖π‘₯(𝑠)βˆ’π‘¦(𝑠)2+5𝑛𝑀20<π‘‘π‘˜<π‘‘π‘€π‘˜πΈβ€–β€–π‘₯ξ€·π‘‘π‘˜ξ€Έξ€·π‘‘βˆ’π‘¦π‘˜ξ€Έβ€–β€–2+5𝑛𝑀20<π‘‘π‘˜<π‘‘π‘π‘˜πΈβ€–β€–π‘₯ξ€·π‘‘π‘˜ξ€Έξ€·π‘‘βˆ’π‘¦π‘˜ξ€Έβ€–β€–2(3.22) which deduces sup[]π‘ βˆˆ0,π‘‡πΈβ€–β€–ξ€·πœ‹1π‘₯ξ€Έξ€·πœ‹(𝑠)βˆ’1𝑦‖‖(𝑠)2≀5𝑀2𝑀2𝐷+𝑇𝑀2𝐷+𝑇𝑀2𝑓+𝑛𝑛𝑖=0π‘€π‘˜+𝑛𝑛𝑖=0π‘π‘˜ξƒ­sup[]π‘ βˆˆ0,𝑇𝐸‖π‘₯(𝑠)βˆ’π‘¦(𝑠)β€–2(3.23) and the lemma follows.

Lemma 3.5. The operator Ο€2 is compact.

Proof. Let 𝑁>0 be such that πœ‹2(𝐡𝑁)βŠ‚π΅π‘.
We first need to prove that the set of functions πœ‹2(𝐡𝑁) is equicontinuous on [0, T]. Let 0<πœ€<𝑑<𝑇 and 𝛿>0 such that ‖𝑆(𝑠)π‘₯βˆ’π‘†(π‘ ξ…ž)π‘₯β€–2<πœ€ and ‖𝐢(𝑠)π‘₯βˆ’πΆ(π‘ ξ…ž)π‘₯β€–2<πœ€, for every 𝑠,π‘ ξ…žβˆˆ[0,𝑇] with |π‘ βˆ’π‘ ξ…ž|≀𝛿. For π‘₯βˆˆπ΅π‘ and 0<|β„Ž|<𝛿 with 𝑑+β„Žβˆˆ[0,𝑇] we have πΈβ€–β€–ξ€·πœ‹2π‘₯ξ€Έξ€·πœ‹(𝑑+β„Ž)βˆ’2π‘₯ξ€Έβ€–β€–(𝑑)2β€–[]‖≀3𝐸𝐢(𝑑+β„Ž)βˆ’πΆ(𝑑)πœ™(0)2β€–β€–β€–ξ€œ+3𝐸𝑑0[]𝑔𝑆(𝑑+β„Žβˆ’π‘ )βˆ’π‘†(π‘‘βˆ’π‘ )𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘Š(𝑠)βˆ’π‘‘π‘‘+β„Žξ€·π‘†(𝑑+β„Žβˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έβ€–β€–β€–π‘‘π‘Š(𝑠)2β€–β€–β€–ξ€œ+3𝐸𝑑0[]ξ€œπ‘†(𝑑+β„Žβˆ’π‘ )βˆ’π‘†(π‘‘βˆ’π‘ )𝐡𝑒(𝑠)π‘‘π‘ βˆ’π‘‘π‘‘+β„Žβ€–β€–β€–π‘†(𝑑+β„Žβˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠2≀3πœ€πΈβ€–πœ™(0)β€–2+6tr(𝑄)𝑀2ξ€œπ‘‘π‘‘+β„ŽπΈβ€–β€–π‘”ξ€·π‘ ,π‘₯ξ…ž(𝑠),π‘₯𝑠‖‖2𝑑𝑠+6𝑀2ξ€œπ‘‘π‘‘+β„ŽπΈβ€–π΅π‘’(𝑠)β€–2𝑑𝑠+6𝑀2ξ€œπ‘‘0𝐸‖𝐡𝑒(𝑠)β€–2ξ€œπ‘‘π‘ +6tr(𝑄)𝑑0𝐸‖‖[]𝑔𝑆(𝑑+β„Žβˆ’π‘ )βˆ’π‘†(π‘‘βˆ’π‘ )𝑠,π‘₯𝑠‖‖2β€–β€–π‘₯𝑑𝑠≀4πœ€πΈ0β€–β€–2+4πœ€πΈβ€–π‘”(π‘₯)β€–2ξ€œ+4πœ€tr(𝑄)𝑑0𝐸‖‖𝑔𝑠,π‘₯𝑠‖‖2𝑑𝑠+4tr(𝑄)𝑀2ξ€œπ‘‘π‘‘+β„ŽπΈβ€–π‘”(𝑠,𝑠π‘₯β€–(𝑠))2𝑑𝑠.(3.24) Noting that 𝐸‖𝑔(𝑠,𝑠π‘₯(𝑠))β€–2β‰€β„Žπ‘(𝑠)∈𝐿1([0,𝑇]), we see that πœ‹2(𝐡𝑁) is equicontinuous on [0, T].
We next need to prove that πœ‹2 maps 𝐡𝑁 into a precompact set in 𝐡𝑁. That is, for every fixed π‘‘βˆˆ[0,𝑇], the set 𝑉(𝑑)={(πœ‹2π‘₯)(𝑑)∢π‘₯βˆˆπ΅π‘} is precompact in 𝐡𝑁. It is obvious that 𝑉(0)={(πœ‹2π‘₯)(0)} is precompact. Let 0<𝑑≀𝑇 be fixed and 0<πœ€<𝑑. For π‘₯βˆˆπ΅π‘, define ξ€·πœ‹πœ€2π‘₯ξ€Έ(ξ€œπ‘‘)=𝐢(𝑑)πœ™(0)+0π‘‘βˆ’πœ€ξ€·π‘†(π‘‘βˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘Š(𝑠)+0π‘‘βˆ’πœ€ξ€œπ‘†(π‘‘βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠=𝐢(𝑑)πœ™(0)+𝑆(πœ€)0π‘‘βˆ’πœ€ξ€·π‘†(π‘‘βˆ’πœ€βˆ’π‘ )𝑔𝑠,π‘₯π‘ ξ€Έξ€œπ‘‘π‘Š(𝑠)+𝑆(πœ€)0π‘‘βˆ’πœ€π‘†(π‘‘βˆ’πœ€βˆ’π‘ )𝐡𝑒(𝑠)𝑑𝑠.(3.25) Since 𝐢(𝑑),𝑆(𝑑),𝑑>0, are compact, it follows that π‘‰πœ€(𝑑)={(πœ‹πœ€2π‘₯)(𝑑)∢π‘₯βˆˆπ΅π‘} is precompact in H for every 0<πœ€<𝑑. Moreover, for each π‘₯βˆˆπ΅π‘, we have πΈβ€–β€–ξ€·πœ‹2π‘₯ξ€Έ(ξ€·πœ‹π‘‘)βˆ’πœ€2π‘₯ξ€Έ(‖‖𝑑)2≀2tr(𝑄)𝑀2ξ€œπ‘‘π‘‘βˆ’πœ€πΈβ€–β€–π‘”ξ€·π‘ ,π‘₯𝑠‖‖2𝑑𝑠+2𝑀2ξ€œπ‘‘π‘‘βˆ’πœ€πΈβ€–π΅π‘’(𝑠)β€–2π‘‘π‘ β‰€πœ€2𝑀2ξ€Ίξ€·tr(𝑄)πΈβ€–πœ‘β€–2ξ€Έξ€»+1+π‘ˆβ†’0π‘Žπ‘ πœ€β†’0+(3.26) which means that there are precompact sets arbitrary close to the set 𝑉(𝑑). Thus, 𝑉(𝑑) is precompact in 𝐡𝑁.
Finally, from the assumptions on g, it is obvious that πœ‹2 is continuous. Thus, ArzelΓ‘-Ascoli theorem yields that πœ‹2 is compact. Therefore, Ο€ is a condensing map on 𝐡𝑁.

4. Applications

In this section, we now give an example to illustrate the theory obtained. Considering the following impulsive neutral second-order stochastic differential equation: π‘‘ξ‚Έπœ•π‘₯(𝑑,𝑧)ξ‚Ή=πœ•πœ•π‘‘+π‘Ž(𝑑)π‘₯(𝑑,𝑧)2πœ•π‘§2[][],π‘₯(𝑑,𝑧)𝑑𝑑+𝜎(𝑑,π‘₯(𝑑,𝑧))π‘‘π‘Š(𝑑),π‘‘βˆˆ0,1π‘₯(𝑑,0)=π‘₯(𝑑,πœ‹)=0,π‘‘βˆˆ0,1πœ•π‘₯(0,𝑧)πœ•π‘‘=π‘₯1[]𝑑(𝑧),π‘§βˆˆ0,πœ‹Ξ”π‘₯π‘˜ξ€Έ(𝑧)=πΌπ‘˜ξ€·π‘₯ξ€·π‘‘π‘˜ξ€Έξ€Έ(𝑧),Ξ”π‘₯ξ…žξ€·π‘‘π‘˜ξ€Έξ‚πΌ(𝑧)=π‘˜ξ€·π‘₯ξ€·π‘‘π‘˜ξ€Έξ€Έ(𝑧),𝑑=π‘‘π‘˜,(4.1) to rewrite (4.1) into the abstract form of (1.1), let 𝐻=𝐿2[0,πœ‹], π΄βˆΆπ»β†’π» be an operator by 𝐴π‘₯=π‘₯ξ…žξ…ž with domain 𝐷(𝐴)=π‘₯∈𝐻∢π‘₯,π‘₯ξ…žareabsolutelycontinuous,π‘₯ξ…žξ…žξ€Ύβˆˆπ»,π‘₯(0)=π‘₯(πœ‹)=0.(4.2) It is well known that 𝐴 is the infinitesimal generator of a strongly continuous cosine family {𝐢(𝑑)βˆΆπ‘‘βˆˆπ‘…} in 𝐻 and is given by 𝐢(𝑑)π‘₯=βˆžξ“π‘›=1cos(𝑛𝑑)⟨π‘₯,π‘’π‘›βŸ©π‘’π‘›,π‘₯∈𝐻,(4.3) where π‘’π‘›βˆš(πœ‰)=2/πœ‹sin(π‘›πœ‰)and𝑖=1,2,… is the orthogonal set of eigenvalues of 𝐴. The associated sine family {𝑆(𝑑)βˆΆπ‘‘>0} is compact and is given by 𝑆(𝑑)π‘₯=βˆžξ“π‘›=11𝑛sin(𝑛𝑑)⟨π‘₯,π‘’π‘›βŸ©π‘’π‘›,π‘₯∈𝐻.(4.4) Thus, we can impose some suitable conditions on the above functions to verify the condition in Theorem 3.2.

5. Conclusions

In this paper, we have studied the controllability of second-order impulsive evolution equations. Through the Sadovskii fixed point theorem and the theory of strongly continuous cosine families of operators, we have investigated the sufficient conditions for the controllability of the system considered. At last, an example is provided to show the usefulness and effectiveness of proposed controllability results.

Acknowledgments

This work was supported in part by the Key Project of the National Nature Science Foundation of China (no. 61134009), the National Nature Science Foundation of China (no. 60975059), Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (no. 20090075110002), Specialized Research Fund for Shanghai Leading Talents, and Project of the Shanghai Committee of Science and Technology (nos. 11XD1400100, 11JC1400200, 10JC1400200).