Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 809187, 22 pages
http://dx.doi.org/10.1155/2012/809187
Research Article

Adaptive Sliding Mode Control of Single-Phase Shunt Active Power Filter

Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, College of Computer and Information, Hohai University, Changzhou 213022, China

Received 22 August 2012; Revised 23 September 2012; Accepted 24 September 2012

Academic Editor: Piermarco Cannarsa

Copyright © 2012 Juntao Fei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, p. 3375, 2010. View at Google Scholar
  2. G. K. Singh, A. K. Singh, and R. Mitra, “A simple fuzzy logic based robust active power filter for harmonics minimization under random load variation,” Electric Power Systems Research, vol. 77, no. 8, pp. 1101–1111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. N. Bhende, S. Mishra, and S. K. Jain, “TS-fuzzy-controlled active power filter for load compensation,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1459–1465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. I. M. Montero, E. R. Cadaval, and F. B. González, “Comparison of control strategies for shunt active power filters in three-phase four-wire systems,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 229–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Matas, L. Garcia de Vicuna, J. Miret, J. M. Guerrero, and M. Castilla, “Feedback linearization of a single-phase active power filter via sliding mode control,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 116–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. C. Hua, C. H. Li, and C. S. Lee, “Control analysis of an active power filter using Lyapunov candidate,” IET Power Electronics, vol. 2, no. 4, pp. 325–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Komucugil and O. Kukrer, “A new control strategy for single-phase shunt active power filters using a Lyapunov function,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 305–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. W. Chang and T. C. Shee, “A novel reference compensation current strategy for shunt active power filter control,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1751–1758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Pereira, C. H. Da Silva, L. E. B. Da Silva, G. Lambert-Torres, and J. O. P. Pinto, “New strategies for application of adaptive filters in active power filters,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1136–1141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Marconi, F. Ronchi, and A. Tilli, “Robust nonlinear control of shunt active filters for harmonic current compensation,” Automatica, vol. 43, no. 2, pp. 252–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Asiminoaei, F. Blaabjerg, S. Hansen, and P. Thøgersen, “Adaptive compensation of reactive power with shunt active power filters,” IEEE Transactions on Industry Applications, vol. 44, no. 3, pp. 867–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Luo, Z. Shuai, W. Zhu, R. Fan, and C. Tu, “Development of hybrid active power filter based on the adaptive fuzzy dividing frequency-control method,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 424–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ribeiro, R. Azevedo, and C. Sousa, “A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation, and balancing of nonlinear loads,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 718–730, 2012. View at Google Scholar
  14. A. A. Valdez, G. Escobar, and R. Ortega, “An adaptive controller for the shunt active filter considering a dynamic load and the line impedance,” IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp. 458–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. K. Shyu, M. J. Yang, Y. M. Chen, and Y. F. Lin, “Model reference adaptive control design for a shunt active-power-filter system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 97–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. L. Jou, J. C. Wu, Y. J. Chang, and Y. T. Feng, “A novel active power filter for harmonic suppression,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1507–1513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Ramos-Carranza, A. Medina, and G. W. Chang, “Real-time shunt active power filter compensation,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2623–2625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, Englewood Cliffs, NJ, USA, 1995.