Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 857512, 19 pages
http://dx.doi.org/10.1155/2012/857512
Research Article

Emergent Behaviors in Social Networks of Adaptive Agents

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi, Boulevard Mangeron 27, 700050 Iasi, Romania

Received 24 June 2011; Accepted 13 July 2011

Academic Editor: Carlo Cattani

Copyright © 2012 Florin Leon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lucas, “Self-organizing systems: frequently asked questions,” Version 3, September 2008, http://www.calresco.org/sos/sosfaq.htm.
  2. J. M. E. Gabbai, H. Yin, W. A. Wright, and N. M. Allinson, “Self-organization, emergence and multi-agent systems,” in Proceedings of the IEEE International Conference on Neural Networks and Brain Proceedings (ICNN&B '05), pp. 1858–1863, Beijing, China, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Heylighen, “Knowledge Management, Organizational Intelligence and Learning, and Complexity,” in The Encyclopedia of Life Support Systems, L. D. Kiel, Ed., Eolss Publishers, Oxford, 2001. View at Google Scholar
  4. P. Glansdorff and I. Prigogine, Thermodynamic Study of Structure, Stability and Fluctuations, Wiley, 1971.
  5. N. S. Contractor and D. R. Seibold, “Theoretical frameworks for the study of structuring processes in group decision support system—adaptive structuration theory and self-organising systems theory,” Human Communication Research, vol. 19, no. 4, pp. 528–563, 1993. View at Google Scholar
  6. C. Bernon, V. Chevrier, V. Hilaire, and P. Marrow, “Applications of self-organising multi-agent systems: an initial framework for comparison,” Informatica, vol. 30, no. 1, pp. 73–82, 2006. View at Google Scholar · View at Scopus
  7. F. Wang, “Self-organising communities formed by middle agents,” in Proceedings of the 1st International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS '02), pp. 1333–1339, Bologna, Italy, July 2002.
  8. G. Picard, C. Bernon, and M. P. Gleizes, “ETTO: emergent timetabling by cooperative self-organisation,” in Proceedings of the 3rd International Workshop on Engineering Self-Organising Applications (ESOA '05), pp. 31–45, Utrecht, The Netherlands, 2005.
  9. J. P. Georgé, M. P. Gleizes, P. Glize, and C. Régis, “Real-time simulation for flood forecast: an adaptive multi-agent system STAFF,” in Proceedings of the Symposium on Adaptive Agents and Multi-Agent Systems (AISB '03), pp. 7–11, University of Wales, Aberystwyth, UK, 2003.
  10. A. Dury, F. Le Ber, and V. Chevrier, “A reactive approach for solving constraint satisfaction problems: assigning land use to farming territories,” in Intelligent Agents V Agents Theories, Architectures and Languages, J. P. Muller, M. P. Singh, and A. S. Rao, Eds., vol. 1555 of Lecture Notes in Artificial Intelligence, pp. 397–412, Springer, 1998. View at Google Scholar
  11. S. Rodriguez, V. Hilaire, and A. Koukam, “Holonic modeling of environments for situated multi-agent systems,” in Proceedings of the 2nd International Workshop on Environments for Multi-Agent Systems (E4MAS '05), Selected Revised and Invited Papers, pp. 18–31, Utrecht, The Netherlands, 2006.
  12. M. Gardner, On Cellular Automata, Self-Reproduction, and the Game “Life”, Scientific American, 1971.
  13. P. Rendell, Turing Universality of the Game of Life, Collision-Based Computing, Springer, London, UK, 2002.
  14. S. Stepney, F. A. C. Polack, and H. R. Turner, “Engineering emergence,” in Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS '06), pp. 89–97, Stanford, Calif, USA, August 2006. View at Scopus
  15. E. M. A. Ronald, M. Sipper, and M. S. Capcarrère, “Testing for emergence in artificial life,” in Advances in Artificial Life: 5th European Conference, D. Floreano, J. D. Nicoud, and F. Mondada, Eds., vol. 1674 of Lecture Notes in Artificial Intelligence, pp. 13–20, Springer, Heidelberg, Germany, 1999. View at Publisher · View at Google Scholar
  16. J. P. Crutchfield, “The calculi of emergence: computation, dynamics, and induction,” Physica D, vol. 75, no. 1–3, pp. 11–54, 1994. View at Google Scholar
  17. J. Deguet, L. Magnin, and Y. Demazeau, “Emergence and software development based on a survey of emergence definitions,” in Emergent Intelligence of Networked Agents, A. Namatame, S. Kurihara, and H. Nakashima, Eds., vol. 56 of Studies in Computational Intelligence, pp. 13–21, Springer, 2007. View at Publisher · View at Google Scholar
  18. L. Guo and X. Cai, “The fractal dimensions of complex networks,” Chinese Physics Letters, vol. 26, no. 8, Article ID 088901, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. G. Bakhoum and C. Toma, “Specific mathematical aspects of dynamics generated by coherence functions,” Mathematical Problems in Engineering, vol. 2011, Article ID 436198, 10 pages, 2011. View at Publisher · View at Google Scholar
  20. E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. F. Leon, S. Curteanu, C. Lisa, and N. Hurduc, “Machine learning methods used to predict the liquid-cristalline behavior of some copolyethers,” Molecular Crystals & Liquid Crystals, vol. 469, pp. 1–22, 2007. View at Google Scholar
  22. D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  23. P. Erdős and A. Rényi, “On random graphs: I,” Publicationes Mathematicae Debrecen, vol. 6, pp. 290–297, 1959. View at Google Scholar
  24. S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp. 60–67, 1967. View at Google Scholar
  25. R. Albert, H. Jeong, and A. L. Barabási, “Diameter of the world-wide web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 99, no. 3, pp. 7314–7316, 2002. View at Google Scholar
  27. M. E. Gaston and M. desJardins, “Social networks and multi-agent organizational performance,” in Proceedings of the 18th International Florida Artificial Intelligence Research Society Conference (FLAIRS '05), Special Track on AI for Social Networks, Social Networks for AI, Clearwater, Fla, USA, May 2005.
  28. C. Song, S. Havlin, and H. A. Makse, “Self-similarity of complex networks,” Nature, vol. 433, no. 7024, pp. 392–395, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. F. Leon, Intelligent Agents with Cognitive Capabilities, Tehnopress, Iasi, Romania, 2006.
  30. G. Di Marzo Serugendo, M. P. Gleizes, and A. Karageorgos, “Self-organisation and emergence in MAS: an overview,” Informatica, vol. 30, no. 1, pp. 45–54, 2006. View at Google Scholar · View at Scopus
  31. X. Zheng and S. Koenig, “Reaction functions for task allocation to cooperative agents,” in Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems, pp. 559–566, Estoril, Portugal, 2008.
  32. K. Lerman and O. Shehory, “Coalition formation for large-scale electronic markets,” in Proceedings of the 4th International Conference on Multi-Agent Systems, pp. 167–174, Boston, Mass, USA, 2000.
  33. M. D. Weerdt, Y. Zhang, and T. Klos, “Distributed task allocation in social networks,” in Proceedings of the 6th Automous Agents and Multiagent Systems, pp. 500–507, Honolulu, Hawaii, USA, 2007.
  34. D. Ye, Q. Bai, M. Zhang, K. T. Win, and Z. Shen, “An efficient task allocation protocol for P2P multi-agent systems,” in Proceedings of the IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA '09), pp. 11–18, Chengdu, China, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Zheng and S. Koenig, “Greedy approaches for solving task-allocation problems with coalitions,” in Proceedings of the Workshop on Formal Models and Methods for Multi-Robot Systems (AAMAS '08), pp. 35–40, Estoril, Portugal, 2008.
  36. A. Campbell and A. S. Wu, “Multi-agent role allocation: issues, approaches, and multiple perspectives,” Autonomous Agents and Multi-Agent Systems, vol. 22, no. 2, pp. 317–355, 2010. View at Google Scholar
  37. R. G. Smith, “The contract net protocol: high-level communication and control in a distributed problem solver,” IEEE Transactions on Computers, vol. 29, no. 12, pp. 1104–1113, 1980. View at Google Scholar · View at Scopus