Research Article

# Solving Packing Problems by a Distributed Global Optimization Algorithm

## Table 5

List of optimal arrangement of the boxes.
 Store S1 S2 S3 S4 S5 S6 , , ) A (1, 2, 0) A (0, 1, 3) A (4, 0, 2) A (0, 0, 3) A (4, 0, 0) A (0, 0, 0) ( , , ) A (3, 3, 3) A (5, 0, 0) A (0, 1, 0) A (0, 2, 3) A (4, 1, 3) A (5, 2, 0) ( , , ) A (0, 4, 0) B (3, 0, 0) A (1, 2, 0) B (3, 0, 1) A (0, 2, 0) A (0, 3, 0) ( , , ) B (4, 0, 0) B (1, 0, 2) B (3, 0, 0) B (7, 0, 1) A (4, 4, 1) A (2, 4, 0) ( , , ) B (0, 0, 1) B (3, 0, 2) B (0, 3, 0) B (1, 0, 2) B (2, 0, 0) A (5, 1, 0) ( , , ) B (2, 0, 0) B (1, 0, 0) B (1, 0, 2) C (0, 2, 0) B (2, 0, 2) B (3, 0, 2) ( , , ) C (0, 2, 1) C (0, 2, 0) B (0, 3, 2) C (6, 2, 0) B (0, 0, 2) C (0, 1, 1) ( , , ) C (3, 2, 0) C (3, 2, 0) C (2, 2, 1) C (3, 2, 0) C (1, 2, 0) C (3, 2, 1) Dimension of Volume of 120 120 100 180 100 120 The global solution is (37, 5, 4), and the minimal volume of the container is 740.

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.