Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 973082, 18 pages
http://dx.doi.org/10.1155/2012/973082
Research Article

Fuzzy Control of DC-DC Converters with Input Constraint

1LAMEL, Faculty of Science and Technology, University of Jijel, BP. 98, Ouled Aissa, 18000 Jijel, Algeria
2MIS (EA 4290), Université de Picardie Jules Verne, Rue du Moulin Neuf, 80000 Amiens, France
3Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Received 6 June 2012; Accepted 9 September 2012

Academic Editor: Peng Shi

Copyright © 2012 D. Saifia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H.-S. Kim, J. H. Kim, B. D. Min, D. W. Yoo, and H. J. Kim, “A highly efficient PV system using a series connection of DC-DC converter output with a photovoltaic panel,” Renewable Energy, vol. 34, no. 11, pp. 2432–2436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Olalla, I. Queinnec, R. Leyva, and A. El Aroudi, “Robust optimal control of bilinear DC-DC converters,” Control Engineering Practice, vol. 19, no. 7, pp. 688–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-K. Kaldellis, “The wind potential impact on the maximum wind energy penetration in autonomous electrical grids,” Renewable Energy, vol. 33, no. 7, pp. 1665–1677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Li and Z. Ji, “T-S modeling, simulation and control of the Buck converter,” in Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, pp. 663–667, Schandong, China, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Y. Lian, J. J. Liou, and C. Y. Huang, “LMI-based integral fuzzy control of DC-DC converters,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 1, pp. 71–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Gadoura, T. Suntio, and K. Zenger, “Model uncertainty and robust control of paralleled DC/DC converters,” in Proceedings of the 15th World IFAC Congress on Power Electronics, Machines and Drives, pp. 74–79, Barcelona, Spain, April 2002. View at Scopus
  7. D. Alejo, P. Maussion, and J. Faucher, “Multiple model control of a Buck dc/dc converter,” Mathematics and Computers in Simulation, vol. 63, no. 3–5, pp. 249–260, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. K. Guesmi, N. Essounbouli, A. Hamzaoui, J. Zaytoon, and N. Manamanni, “Shifting nonlinear phenomena in a DC-DC converter using a fuzzy logic controller,” Mathematics and Computers in Simulation, vol. 76, no. 5-6, pp. 398–409, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. J. Sun and H. Grotstollen, “Averaged modelling of switching power converters: reformulation and theoretical basis,” in Proceedings of the Power electronics specialists Conference, pp. 1165–1172, Taledo, Spain, 1992.
  10. A. Shahin, B. Huang, J. P. Martin, S. Pierfederici, and B. Davat, “New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio,” Energy Conversion and Management, vol. 51, no. 1, pp. 56–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Guesmi, N. Essounbouli, and A. Hamzaoui, “Systematic design approach of fuzzy PID stabilizer for DC-DC converters,” Energy Conversion and Management, vol. 49, no. 10, pp. 2880–2889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. F. D. Tan and R. D. Middlebrook, “Unified model for current-programmed converters,” IEEE Transactions on Power Electronics, vol. 10, no. 4, pp. 397–408, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Elmas, O. Deperlioglu, and H. H. Sayan, “Adaptive fuzzy logic controller for DC-DC converters,” Expert Systems with Applications, vol. 36, no. 2, pp. 1540–1548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. R. K. Chetty, “Modelling and design of switching regulators,” IEEE Transactions on Aerospace and Electronic Systems, vol. 18, no. 3, pp. 333–344, 1982. View at Google Scholar · View at Scopus
  15. H. K. Lam, T. H. Lee, F. H. E. Leung, and P. K. S. Tam, “Fuzzy control of DC-DC switching converters: stability and robustness analysis,” in Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, Colo, USA, December 2001.
  16. H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC-DC converter,” IET Control Theory & Applications, vol. 3, no. 8, pp. 1093–1106, 2009. View at Publisher · View at Google Scholar
  17. S. Bououden, M. Chadli, S. Filali, and A. El Hajjaji, “Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach,” Renewable Energy, vol. 37, no. 1, pp. 434–439, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Y. Cao and Z. Lin, “Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 1, pp. 57–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Saifia, M. Chadli, and S. Labiod, “Static output feedback stabilization of multiple models subject to actuators saturation,” in Proceedings of the 12th IFAC Symposium on Large Scale Systems, Villeneuve d'Ascq, France, 2011.
  20. D. Saifia, M. Chadli, and S. Labiod, “H∞ control of multiple model subject to actuator saturation: application to quarter-car suspension system,” Analog Integrated Circuits and Signal Processing, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Zhang, G. Feng, H. Liu, and J. Lu, “Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 253–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. P. Huang, “Model based fuzzy control with affine T-S delayed models applied to nonlinear systems,” International Journal of Innovative Computing, vol. 8, no. 5, pp. 2979–2993, 2012. View at Google Scholar
  23. C.-H. Sun, Y.-T. Wang, C.-C. Chang, and T.-S. Switching, “Fuzzy model-based guaranteed cost control for two-wheeled mobile robots,” International Journal of Innovative Computing A, vol. 8, no. 5, pp. 3015–3028, 2012. View at Google Scholar
  24. L. Wu, X. Su, P. Shi, and J. Qiu, “A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41, no. 1, pp. 273–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Wu, X. Su, P. Shi, and J. A. Qiu, “Novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. PP, no. 99, p. 1, 2012. View at Google Scholar
  26. C.-H. Sun, S.-W. Lin, and Y.-T. Wang, “Relaxed stabilization conditions for switching T-S fuzzy systems with practical constraints,” International Journal of Innovative Computing, vol. 8, no. 6, pp. 4133–4145, 2012. View at Google Scholar
  27. X. Su, L. Wu, P. Shi, and Y. D. . Song, “H model reduction of T-S fuzzy stochastic systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. PP, no. 99, pp. 1–12, 2012. View at Google Scholar
  28. L. Wu, X. Su, P. Shi, and J. Qiu, “Model approximation for discrete-time state-delay systems in the TS fuzzy framework,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 366–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. H. Chang and G. H. Yang, “Relaxed results on stabilization and state feedback H∞ control conditions for T-S fuzzy systems,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 4, pp. 1753–1764, 2011. View at Google Scholar · View at Scopus
  30. H. J. Lee and D. W. Kim, “Robust stabilization of T-S fuzzy systems: fuzzy static output feedback under parametric uncertainty,” International Journal of Control, Automation and Systems, vol. 7, no. 5, pp. 731–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chadli and P. Borne, “Design of robust static output controller for uncertain fuzzy model: an LMI formulation,” Studies in Informatics and Control, vol. 16, pp. 421–430, 2007. View at Google Scholar
  32. K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250–265, 1998. View at Google Scholar · View at Scopus
  33. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1994. View at Publisher · View at Google Scholar
  34. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985. View at Google Scholar · View at Scopus
  35. L. Zhang and J. Lam, “Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions,” IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1695–1701, 2010. View at Publisher · View at Google Scholar
  36. L. Zhang and P. Shi, “Stability, L2-gain and asynchronous H control of discrete-time switched systems with average dwell time,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2192–2199, 2009. View at Publisher · View at Google Scholar
  37. L. Zhang, N. Cui, M. Liu, and Y. Zhao, “Asynchronous filtering of discrete-time switched linear systems with average dwell time,” IEEE Transactions on Circuits and Systems, vol. 58, no. 5, pp. 1109–1118, 2011. View at Publisher · View at Google Scholar