Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 120736, 8 pages
http://dx.doi.org/10.1155/2013/120736
Research Article

Cortex Effect on Vacuum Drying Process of Porous Medium

1School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
2Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received 25 February 2013; Accepted 5 April 2013

Academic Editor: Jun Liu

Copyright © 2013 Zhijun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Xu, Z. J. Zhang, S. W. Zhang, and X. He, “Probe into the structure of tower continuous vacuum dryer,” in Proceedings of the 5th Asia-Pacific Drying Conference (ADC '07), pp. 1261–1267, August 2007.
  2. Z. J. Zhang, C. H. Xu, S. W. Zhang, and X. He, “The study of corn low temperature continuous tower type vacuum dryer,” in Proceedings of the 5th Asia-Pacific Drying Conference (ADC '07), pp. 330–337, August 2007.
  3. Z. Zhang, C. Xu, S. Zhang, and L. Zhao, “Computer simulation of flow field in tower continuous vacuum dryer,” in Proceedings of the International Conference on Computer Science and Information Technology (ICCSIT '08), pp. 534–538, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Yasuaki and A. P. S. Selvadurai, Transport Phenomena in Porous Media, Aspects of Micro/Macro Behaviour, Springer, 2012.
  5. A. K. Haghi, “Transport phenomena in porous media: a review,” Theoretical Foundations of Chemical Engineering, vol. 40, no. 1, pp. 14–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Kowalski, Drying of Porous Materials, Springer, 2007.
  7. B. Jacob and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Springer, 1990.
  8. A. Erriguible, P. Bernada, F. Couture, and M. A. Roques, “Simulation of vacuum drying by coupling models,” Chemical Engineering and Processing, vol. 46, no. 12, pp. 1274–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Erriguible, P. Bernada, F. Couture, and M. A. Roques, “Modeling of heat and mass transfer at the boundary between a porous medium and its surroundings,” Drying Technology, vol. 23, no. 3, pp. 455–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Murugesan, H. N. Suresh, K. N. Seetharamu, P. A. Aswatha Narayana, and T. Sundararajan, “A theoretical model of brick drying as a conjugate problem,” International Journal of Heat and Mass Transfer, vol. 44, no. 21, pp. 4075–4086, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Perré and I. W. Turner, “A dual-scale model for describing drier and porous medium interactions,” AIChE Journal, vol. 52, no. 9, pp. 3109–3117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Torres, W. Jomaa, J.-R. Puiggali, and S. Avramidis, “Multiphysics modeling of vacuum drying of wood,” Applied Mathematical Modelling, vol. 35, no. 10, pp. 5006–5016, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. S. S. Torres, J. R. Ramírez, and L. Méndez-Lagunas, “Modeling plain vacuum drying by considering a dynamic capillary pressure,” Chemical and Biochemical Engineering Quarterly, vol. 25, no. 3, pp. 327–334, 2011. View at Google Scholar
  14. A. Warning, A. Dhall, D. Mitrea, and A. K. Datta, “Porous media based model for deep-fat vacuum frying potato chips,” Journal of Food Engineering, vol. 110, no. 3, pp. 428–440, 2012. View at Publisher · View at Google Scholar
  15. A. Halder, A. Dhall, and A. K. Datta, “An improved, easily implementable, porous media based model for deep-fat frying. Part I: model development and input parameters,” Food and Bioproducts Processing, vol. 85, no. 3 C, pp. 209–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Halder, A. Dhall, and A. K. Datta, “An improved, easily implementable, porous media based model for deep-fat frying. Part II: results, validation and sensitivity analysis,” Food and Bioproducts Processing, vol. 85, no. 3, pp. 220–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Zhang and N. Kong, “Nonequilibrium thermal dynamic modeling of porous medium vacuum drying process,” Mathematical Problems in Engineering, vol. 2012, Article ID 347598, 22 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet