Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 159027, 9 pages
http://dx.doi.org/10.1155/2013/159027
Research Article

NURBS-Based Isogeometric Analysis of Beams and Plates Using High Order Shear Deformation Theory

School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received 19 July 2013; Accepted 3 September 2013

Academic Editor: Song Cen

Copyright © 2013 Xinkang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, Butterworth-Heinemann, London, UK, 6th edition, 2005.
  2. G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, “Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 34, pp. 3669–3750, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, New York, NY, USA, 2002.
  4. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates,” vol. 12, p. A-69–A-77, 1945. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. P. Madabhusi-Raman and J. F. Davalos, “Static shear correction factor for laminated rectangular beams,” Composites B, vol. 27, no. 3-4, pp. 285–293, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. J. N. Reddy, “A refined nonlinear theory of plates with transverse shear deformation,” International Journal of Solids and Structures, vol. 20, no. 9-10, pp. 881–896, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. J. N. Reddy, “A simple higher-order theory for laminated composite plates,” Journal of Applied Mechanics, vol. 51, no. 4, pp. 745–752, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. K. Y. Dai, G. R. Liu, K. M. Lim, and X. L. Chen, “A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates,” Journal of Sound and Vibration, vol. 269, no. 3–5, pp. 633–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Liu, L. P. Chua, and D. N. Ghista, “Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates,” Composite Structures, vol. 78, no. 1, pp. 58–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, Chichester, UK, 2009.
  11. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 39–41, pp. 4135–4195, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms, and computations,” Computational Mechanics, vol. 43, no. 1, pp. 3–37, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. Y. Bazilevs and T. J. R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components,” Computational Mechanics, vol. 43, no. 1, pp. 143–150, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Isogeometric shell analysis: the Reissner-Mindlin shell,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 276–289, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, “Isogeometric analysis of structural vibrations,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 41–43, pp. 5257–5296, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. X. Qian, “Full analytical sensitivities in NURBS based isogeometric shape optimization,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 29–32, pp. 2059–2071, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. R. L. Taylor, “Isogeometric analysis of nearly incompressible solids,” International Journal for Numerical Methods in Engineering, vol. 87, no. 1–5, pp. 273–288, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. S. Shojaee, N. Valizadeh, E. Izadpanah, T. Bui, and T.-V. Vu, “Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method,” Composite Structures, vol. 94, no. 5, pp. 1677–1693, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.-H. Le, T. Nguyen-Thoi, and T. Rabczuk, “Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach,” International Journal for Numerical Methods in Engineering, vol. 91, no. 6, pp. 571–603, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. L. V. Tran, A. J. M. Ferreira, and H. Nguyen-Xuan, “Isogeometric analysis of functionally graded plates using higher-order shear deformation theory,” Composites B, vol. 51, pp. 368–383, 2013. View at Publisher · View at Google Scholar
  21. L. A. Piegl and W. Tiller, The NURBS Book, Springer, New York, NY, USA, 2nd edition, 1997.
  22. D.-D. Wang, J.-C. Xuan, and C.-H. Zhang, “A three dimensional computational investigation on the influence of essential boundary condition imposition in NURBS isogeometric finite element analysis,” Chinese Journal of Computational Mechanics, vol. 29, no. 1, pp. 31–37, 2012. View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  23. H. Zhang, D. Wang, and J. Xuan, “Non-uniform rational b spline-based isogeometric finite element analysis of thin beams and plates,” Chinese Quarterly of Mechanics, vol. 31, no. 4, pp. 469–477, 2010. View at Google Scholar
  24. A. Embar, J. Dolbow, and I. Harari, “Imposing dirichlet boundary conditions with Nitsche's method and spline-based finite elements,” International Journal for Numerical Methods in Engineering, vol. 83, no. 7, pp. 877–898, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. D. Wang and J. Xuan, “An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 37–40, pp. 2425–2436, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. C. M. Wang, J. N. Reddy, and K. H. Lee, Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Amsterdam, The Netherlands, 2000. View at MathSciNet
  27. W. Kanok-Nukulchai, W. Barry, K. Saran-Yasoontorn, and P. H. Bouillard, “On elimination of shear locking in the element-free Galerkin method,” International Journal for Numerical Methods in Engineering, vol. 52, no. 7, pp. 705–725, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  28. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York, NY, USA, 2nd edition, 1959.
  29. F. Auricchio, L. B. da Veiga, A. Buffa, C. Lovadina, A. Reali, and G. Sangalli, “A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1–4, pp. 160–172, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. R. Bouclier, T. Elguedj, and A. Combescure, “Locking free isogeometric formulations of curved thick beams,” Computer Methods in Applied Mechanics and Engineering, vol. 245/246, pp. 144–162, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  31. R. Echter and M. Bischoff, “Numerical efficiency, locking and unlocking of NURBS finite elements,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5–8, pp. 374–382, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus