Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 173603, 7 pages
http://dx.doi.org/10.1155/2013/173603
Research Article

Estimation of Observer Parameters for Dynamic Positioning Ships

Automation College, Harbin Engineering University, Harbin 150001, China

Received 6 November 2012; Revised 17 January 2013; Accepted 18 January 2013

Academic Editor: Valentina E. Balas

Copyright © 2013 Xiaogong Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. I. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigsand Underwater Vecicles, Trondheim, Norway, 1st edition, 2002.
  2. J. G. Balchen, N. A. Jenssen, and S. Sælid, “Dynamic positioning using kalman filtering and optimal control theory,” in Proceedings of the IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation, pp. 183–186, Amsterdam, The Netherlands, 1976.
  3. A. J. Sørensen, S. I. Sagatun, and T. I. Fossen, “Design of a dynamic positioning system using model-based control,” Control Engineering Practice, vol. 4, no. 3, pp. 359–368, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. T. I. Fossen and J. P. Strand, “Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel,” Automatica, vol. 35, no. 1, pp. 3–16, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. J. P. Strand and T. I. Fossen, “Nonlinear passive observer design for ships with adaptive wave filtering,” in New Directions in Nonlinear Observer Design, vol. 244, pp. 89–94, Springer, London, UK, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. E. A. Tannuri, J. V. Sparano, A. N. Simos, and J. J. Da Cruz, “Estimating directional wave spectrum based on stationary ship motion measurements,” Applied Ocean Research, vol. 25, no. 5, pp. 243–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Pardey, S. Roberts, and L. Tarassenko, “A review of parametric modelling techniques for EEG analysis,” Medical Engineering and Physics, vol. 18, no. 1, pp. 2–11, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, Piscataway, NJ, USA, December 1995. View at Scopus
  9. Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384–391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Wai and K. L. Chuang, “Design of backstepping particle-swarm-optimisation control for maglev transportation system,” IET Control Theory & Applications, vol. 4, no. 4, pp. 625–645, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  11. M. Yang, X. Wang, and K. Zheng, “Nonlinear controller design for permanent magnet synchronous motor using adaptive weighted PSO,” in Proceedings of the American Control Conference (ACC '10), pp. 1962–1966, Baltimore, Md, USA, July 2010. View at Scopus
  12. O. I. Hassanein, A. A. Aly, and A. A. Abo-Ismail, “Parameter tuning via genetic algorithm of fuzzy controller for fire tube boiler,” International Journal of Intelligent Systems and Applications, vol. 4, no. 4, pp. 9–18, 2012. View at Google Scholar