Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 195038, 7 pages
http://dx.doi.org/10.1155/2013/195038
Research Article

Mathematical Model and Stability Analysis of Inverter-Based Distributed Generator

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Received 23 December 2012; Accepted 18 February 2013

Academic Editor: Vu Phat

Copyright © 2013 Alireza Khadem Abbasi and Mohd Wazir Mustafa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. R. H. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference (PESC '04), pp. 4285–4290, June 2004. View at Scopus
  3. E. Antônio, A. Coelho, P. C. Cortizo, P. Francisco, and D. Garcia, “Small-signal stability for parallel-connected inverters in stand-alone AC supply systems,” IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 533–542, 2002. View at Google Scholar
  4. C. K. Sao and P. W. Lehn, “Intentional islanded operation of converter fed microgrids,” in Proceedings of the IEEE Power Engineering Society General Meeting, Quebec, Canada, 2006.
  5. H. Nikkhajoei and R. Iravani, “Steady-state model and power flow analysis of electronically-coupled fistributed resource units,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 721–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Stability analysis and control of multiple converter based autonomous microgrid,” in Proceedings of the IEEE International Conference on Control and Automation (ICCA '09), pp. 1663–1668, Christchurch, New Zealand, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Katiraei, M. R. Iravani, and P. W. Lehn, “Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources,” IET Generation, Transmission and Distribution, vol. 1, no. 3, pp. 369–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhang, Z. Jiang, and X. Yu, “Small-signal modeling and analysis of parallel-connected voltage source inverters,” in Proceedings of the IEEE 6th International Power Electronics and Motion Control Conference (IPEMC '09), pp. 377–383, Wuhan, China, 2009.
  9. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, John Wiley & Sons, New York, NY, USA, 2002.
  10. S. C. Vegunta, J. V. Milanović, and S. Z. Djokić, “Modelling of V Hz and vector controlled ASDs in PSCAD/EMTDC for voltage sag studies,” Electric Power Systems Research, vol. 80, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Kundur, Power System Stability and Control, McGraw-Hill, New York, NY, USA, 1994.