Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 201219, 11 pages
http://dx.doi.org/10.1155/2013/201219
Research Article

Nanofluid Flow over a Permeable Surface with Convective Boundary Conditions and Radiative Heat Transfer

1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
2Department of Engineering Mathematics, GITAM University GIT, Gandhi Nagar, Rushikonda, Visakhapatnam Andhra Pradesh 530 045, India

Received 24 January 2013; Revised 19 February 2013; Accepted 19 February 2013

Academic Editor: Anuar Ishak

Copyright © 2013 P. K. Kameswaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Blasius, “Grenzschichten in Flssigkeiten mit kleiner Reibung,” Zeitschrift Für Angewandte Mathematik Und Physik, vol. 56, pp. 1–37, 1908. View at Google Scholar
  2. E. Pohlhausen, “Der Wrmeaustausch zwischen festen Krpern und Flssigkeiten mit kleiner Reibung und kleiner Wrmeleitung,” Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 1, pp. 121–151, 1921. View at Google Scholar
  3. L. Howarth, “On the solution of the laminar boundary layer equations,” Proceedings of the Royal Society of London A, vol. 164, pp. 547–579, 1938. View at Google Scholar
  4. A. M. M. Abu-Sitta, “A note on a certain boundary-layer equation,” Applied Mathematics and Computation, vol. 64, no. 1, pp. 73–77, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. L. Wang, “A new algorithm for solving classical Blasius equation,” Applied Mathematics and Computation, vol. 157, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. R. Cortell, “Numerical solutions of the classical Blasius flat-plate problem,” Applied Mathematics and Computation, vol. 170, no. 1, pp. 706–710, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces I: boundary-layer equations for two-dimensional and axisymetric flow,” AIChE Journal, vol. 7, pp. 26–28, 1961. View at Google Scholar
  8. S. Mukhopadhyay, K. Bhattacharyya, and G. C. Layek, “Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation,” International Journal of Heat and Mass Transfer, vol. 54, no. 13-14, pp. 2751–2757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Hossain and H. S. Takhar, “Radiation effect on mixed convection along a vertical plate with uniform surface temperature,” Heat and Mass Transfer/Waerme und Stoffuebertragung, vol. 31, no. 4, pp. 243–248, 1996. View at Google Scholar · View at Scopus
  10. M. A. A. Hamad, M. J. Uddina, and A. I. M. Ismaila, “Radiation effects on heat and mass transfer in MHD stagnationpoint flow over a permeable flat plate with thermal convective surface boundary condition, temperature dependent viscosity and thermal conductivity,” Nuclear Engineering and Design, vol. 242, pp. 194–200, 2012. View at Google Scholar
  11. N. P. Singh, A. K. Singh, A. K. Singh, and P. Agnihotri, “Effects of thermophoresis on hydromagnetic mixed convection and mass transfer flow past a vertical permeable plate with variable suction and thermal radiation,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 6, pp. 2519–2534, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. M. Z. Salleh, N. Mohamed, R. Khairuddin, N. S. Khasi’ie, R. Nazar, and I. Pop, “Free convection over a permeable horizontal flat plate embedded in a porous medium with radiation effects and mixed thermal boundary conditions,” Journal of Mathematics and Statistics, vol. 8, pp. 122–128, 2012. View at Google Scholar
  13. E. Magyari, “Comment on ‘A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009; 14:10648’,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 599–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Merkin and I. Pop, “The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 9, pp. 3602–3609, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  15. P. D. Weidman, D. G. Kubitschek, and A. M. J. Davis, “The effect of transpiration on self-similar boundary layer flow over moving surfaces,” International Journal of Engineering Science, vol. 44, no. 11-12, pp. 730–737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, pp. 99–105, ASME, San Francisco, Calif, USA, 1995, FED231/MD66.
  17. H. Masuda, A. Ebata, K. Teramea, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 4, pp. 227–233, 1993. View at Google Scholar
  18. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998. View at Google Scholar · View at Scopus
  20. Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer, vol. 125, no. 1, pp. 151–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. H. U. Kang, S. H. Kim, and J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume,” Experimental Heat Transfer, vol. 19, no. 3, pp. 181–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Velagapudi, R. K. Konijet, and C. S. K. Aduru, “Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids,” Thermal Science, vol. 12, no. 2, pp. 27–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Y. Rudyak, A. A. Belkin, and E. A. Tomilina, “On the thermal conductivity of nanofluids,” Technical Physics Letters, vol. 36, no. 7, pp. 660–662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Bachok, A. Ishak, and I. Pop, “Boundary layer flow over a moving surface in a nanofluid with suction or injection,” Acta Mechanica Sinica, vol. 28, no. 1, pp. 34–40, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  25. J. H. Merkin, “A note on the similarity equations arising in free convection boundary layers with blowing and suction,” Journal of Applied Mathematics and Physics, vol. 45, no. 2, pp. 258–274, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 512–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Bachok, A. Ishak, and I. Pop :, “The boundary layers of an unsteady stagnation-point flow in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, pp. 6499–6505, 2012. View at Google Scholar
  30. N. Bachok, A. Ishak, and I. Pop, “Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, pp. 8122–8128, 2012. View at Google Scholar
  31. N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer characteristics on a moving plate in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, pp. 642–648, 2012. View at Google Scholar
  32. N. Bachok, A. Ishak, and I. Pop, “Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, pp. 2102–2109, 2012. View at Google Scholar
  33. N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer over a rotating porous disk in a nanofluid,” Physica B, vol. 406, no. 9, pp. 1767–1772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Bachok, A. Ishak, and I. Pop, “Stagnation-point flow over a stretching/shrinking sheet in a nanofluid,” Nanoscale Research Letters, vol. 6, p. 623, 2011. View at Google Scholar
  35. N. Bachok, A. Ishak, and I. Pop, “Boundary-layer flow of nanofluids over a moving surface in a flowing fluid,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1663–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Bachok, A. Ishak, R. Nazar, and I. Pop, “Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid,” Physica B, vol. 405, no. 24, pp. 4914–4918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2002–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” The Journal of Chemical Physics, vol. 20, no. 4, pp. 571–581, 1952. View at Google Scholar · View at Scopus
  39. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society A, vol. 203, pp. 385–420, 1904. View at Google Scholar
  40. C. A. Guérin, P. Mallet, and A. Sentenac, “Effective-medium theory for finite-size aggregates,” Journal of the Optical Society of America, vol. 23, no. 2, pp. 349–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” International Journal of Heat and Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Alloui, P. Vasseur, and M. Reggio, “Natural convection of nanofluids in a shallow cavity heated from below,” International Journal of Thermal Sciences, vol. 50, no. 3, pp. 385–393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1064–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Ishak, “Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition,” Applied Mathematics and Computation, vol. 217, no. 2, pp. 837–842, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  45. F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied, and M. R. Eid, “Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet,” Nanoscale Research Letters, vol. 7, p. 229, 2012. View at Google Scholar