Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 215647, 10 pages
http://dx.doi.org/10.1155/2013/215647
Research Article

Simulations of Transformer Inrush Current by Using BDF-Based Numerical Methods

1Faculty of Electrical Engineering, Tuzla University, 75000 Tuzla, Bosnia and Herzegovina
2Faculty of Electrical Engineering and Computing, Zagreb University, 11000 Zagreb, Croatia
3Faculty of Electrical Engineering and Computer Science, Maribor University, 2000 Maribor, Slovenia

Received 7 April 2013; Revised 8 July 2013; Accepted 9 July 2013

Academic Editor: Evangelos J. Sapountzakis

Copyright © 2013 Amir Tokić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. CIGRE Working Group SC 33.02, “Guidelines for representation of network elements when calculating transients,” CIGRE Brochure, vol. 39, pp. 1–29, 1990. View at Google Scholar
  2. D. A. N. Jacobson, P. W. Lehn, and R. W. Menzies, “Stability domain calculations of period-1 ferroresonance in a nonlinear resonant circuit,” IEEE Transactions on Power Delivery, vol. 17, no. 3, pp. 865–871, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Štumberger, S. Seme, B. Štumberger, B. Polajžer, and D. Dolinar, “Determining magnetically nonlinear characteristics of transformers and iron core inductors by differential evolution,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1570–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Pérez-Rojas, “Fitting saturation and hysteresis via arctangent functions,” IEEE Power Engineering Review, vol. 20, no. 11, pp. 55–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhang, “An efficient algorithm for transient calculation of the electric networks including magnetizing branches,” Mathematical Problems in Engineering, vol. 2011, Article ID 479626, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ben-Tal, V. Kirk, and G. Wake, “Banded chaos in power systems,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 105–110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. H. W. Dommel, Electromagnetic Transients Program, Reference Manual, (EMTP Theory Book), Bonneville Power Administration, Portland, Ore, USA, 1986.
  8. C. E. Lin, C. L. Cheng, C. L. Huang, and J. C. Yeh, “Investigation of magnetizing inrush current in transformers—part I: numerical simulation,” IEEE Transactions on Power Delivery, vol. 8, no. 1, pp. 246–254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. E. H. Badawy and R. D. Youssef, “Representation of transformer saturation,” Electric Power Systems Research, vol. 6, no. 4, pp. 301–304, 1983. View at Google Scholar · View at Scopus
  10. S. Seker, T. C. Akinci, and S. Taskin, “Spectral and statistical analysis for ferroresonance phenomenon in electric power systems,” Electrical Engineering, vol. 94, no. 2, pp. 117–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Clavería, M. García-Gracia, M. Á. García, and L. Montañes, “A time domain small transformer model under sinusoidal and non-sinusoidal supply voltage,” European Transactions on Electrical Power, vol. 15, no. 4, pp. 311–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Lucas, P. G. McLaren, W. W. L. Keerthipala, and R. P. Jayasinghe, “Improved simulation models for current and voltage transformers in relay studies,” IEEE Transactions on Power Delivery, vol. 7, no. 1, pp. 152–159, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Baghzouz and X. D. Gong, “Voltage-dependent model for teaching transformer core nonlinearity,” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 746–752, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Tran-Quoc and L. Pierrat, “Efficient non linear transformer model and its application to ferroresonance study,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 2060–2063, 1995. View at Google Scholar · View at Scopus
  15. A. D. Theocharis, J. Milias-Argitis, and T. Zacharias, “Single-phase transformer model including magnetic hysteresis and eddy currents,” Electrical Engineering, vol. 90, no. 3, pp. 229–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Faiz and S. Saffari, “Inrush current modeling in a single-phase transformer,” IEEE Transactions on Magnetics, vol. 46, no. 2, pp. 578–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Akçay and D. G. Ece, “Modeling of hysteresis and power losses in transformer laminations,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 487–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S.-R. Huang, S. C. Chung, B.-N. Chen, and Y.-H. Chen, “A harmonic model for the nonlinearities of single-phase transformer with describing functions,” IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 815–820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. W. L. A. Neves and H. W. Dommel, “On modelling iron core nonlinearities,” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 417–422, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Tokić, I. Uglešić, V. Milardić, and G. Štumberger, “Conversion of RMS to instantaneous saturation curve: inrush current and ferroresonance cases,” in Proceedings of the 14th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering, pp. 1–4, Graz, Austria, 2010.
  21. I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, Academic Press, Elsevier, New York, NY, USA, 2003.
  22. F. C. Trutt, E. A. Erdelyi, and R. E. Hopkins, “Representation of the magnetization characteristic of DC machines for computer use,” IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 3, pp. 665–669, 1968. View at Google Scholar
  23. O. Karlqvist, Calculation of the Magnetic Field in the Ferromagnetic Layer of a Magnetic Drum, vol. 86 of Transactions of the Royal Institute of Technology, Elanders boktr., Stockholm, Sweden, 1954.
  24. J. Takâcs, “A phenomenological mathematical model of hysteresis,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 20, no. 4, pp. 1002–1014, 2001. View at Google Scholar · View at Scopus
  25. J. Takâcs, “The Everett integral and its analytical approximation,” in Advanced Magnetic Materials, pp. 203–230, Intech Publication, 2012. View at Google Scholar
  26. A. Tokić, V. Madžarević, and I. Uglešić, “Numerical calculations of three-phase transformer transients,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2493–2500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Tokić and I. Uglešić, “Elimination of overshooting effects and suppression of numerical oscillations in transformer transient calculations,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 243–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Tokić, V. Madžarević, and I. Uglešić, “Hysteresis model in transient simulation algorithm based on BDF numerical method,” in Proceedings of the IEEE Power Tech Conference, pp. 1–6, St. Petersburg, Russia, 2005.
  29. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems, vol. 14 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1991. View at MathSciNet
  30. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1971. View at MathSciNet
  31. R. W. Klopfenstein, “Numerical differentiation formulas for stiff systems of ordinary differential equations,” RCA Review, vol. 32, no. 3, pp. 447–462, 1971. View at Google Scholar · View at Scopus
  32. L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,” SIAM Journal on Scientific Computing, vol. 18, no. 1, pp. 1–22, 1997. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  33. J. R. Cash, “On the integration of stiff systems of O.D.E.s using extended backward differentiation formulae,” Numerische Mathematik, vol. 34, no. 3, pp. 235–246, 1980. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  34. C. Fredebeul, “A-BDF: a generalization of the backward differentiation formulae,” SIAM Journal on Numerical Analysis, vol. 35, no. 5, pp. 1917–1938, 1998. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  35. J. E. Frank and P. J. van der Houwen, “Diagonalizable extended backward differentiation formulas,” BIT Numerical Mathematics, vol. 40, no. 3, pp. 497–512, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  36. E. Alberdi and J. J. Anza, “A predictor modification to the EBDF method for Stiff systems,” Journal of Computational Mathematics, vol. 29, no. 2, pp. 199–214, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, and M. B. Suleiman, “A quantitative comparison of numerical method for solving stiff ordinary differential equations,” Mathematical Problems in Engineering, vol. 2011, Article ID 193691, 12 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  38. M. Tadeusiewicz and S. Hałgas, “Transient analysis of nonlinear dynamic circuits using a numerical-integration method,” COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 24, no. 2, pp. 707–719, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus