Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 243670, 12 pages
http://dx.doi.org/10.1155/2013/243670
Research Article

Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

1State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
2Drilling and Production Technology Institute, PetroChina Jidong Oilfield Company, Tangshan 063000, China

Received 19 January 2013; Accepted 8 April 2013

Academic Editor: Fazal M. Mahomed

Copyright © 2013 Hongtao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Aithoff, “MWD ultrasonic capliper advanced detection techniques,” in Proceedings of the SPWLA 39th Annual Logging Symposium, 1998.
  2. R. Hutin, R. W. Tennent, and S. V. Kashikar, “New mud pulse telemetry techniques for deepwater applications and improved real-time data capabilities,” in Proceedings of the SPE/IADC Drilling Conference, pp. 73–82, Amsterdam, The Netherlands, March 2001. View at Scopus
  3. T. I. Waag, T. Torkildsen, P. A. Amundsen, E. Nyrnes, and A. Saasen, “The design of BHA and the placement of magnetometer sensors influence how magnetic azimuth is distorted by the magnetic properties of drilling fluids,” SPE Drilling & Completion, vol. 27, no. 3, pp. 393–406, 2012. View at Google Scholar
  4. E. Molz, D. Canny, and E. Evans, “Ultrasonic velocity and attenuation measurements in high density drilling muds,” in Proceedings of the 39th Annual Logging Symposium, May 1998. View at Scopus
  5. H. Wang, G. H. Priestman, S. B. M. Beck, and R. F. Boucher, “Pressure wave attenuation in an air pipe flow,” Journal of Mechanical Engineering, vol. 214, no. 4, pp. 619–632, 2000. View at Google Scholar · View at Scopus
  6. S. J. Chen and J. T. Aumann, “Numerical simulation of MWD pressure pulse transmission,” in Proceedings of the SPE Annual Technical Conference and Exhibition, Las Vegas, Nev, USA, 1985.
  7. X. S. Liu, B. Li, and Y. Q. Yue, “Transmission behavior of mud-pressure pulse along well bore,” Journal of Hydrodynamics, vol. 19, no. 2, pp. 236–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Li, G. Li, Y. Meng, G. Shu, K. Zhu, and X. Xu, “Attenuation law of MWD pulses in aerated drilling,” Petroleum Exploration and Development, vol. 39, no. 2, pp. 250–255, 2012. View at Google Scholar
  9. S. M. Beck, H. Haider, and R. F. Boucher, “Transmission line modelling of simulated drill strings undergoing water-hammer,” Journal of Mechanical Engineering Science, vol. 209, no. 6, pp. 419–427, 1995. View at Google Scholar · View at Scopus
  10. A. R. D. Thorley, Fluid Transients in Pipeline Systems, D. and L. George Limited, Batnet, Hertfordshire, UK, 1971.
  11. E. B. Wylie and V. L. Streeter, Fluid Transients, FEB Press, Ann Arbor, Mich, USA, 1983.
  12. R. C. Binder, Advanced Fluid Mechanics, Prentice Hall, Englewood Cliffs, NJ, USA, 1958.
  13. J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge, UK, 1978. View at MathSciNet
  14. F. T. Brown, “The transient response of fluid lines,” Journal of Fluids Engineering, Transactions of the ASME, vol. 84, no. 4, pp. 547–553, 1962. View at Google Scholar
  15. A. S. Iberall, “Atttenuation of oscillatory pressures in instrument lines,” Journal of Research of the National Bureau of Standards, vol. 45, RP 2115, pp. 85–108, 1950. View at Google Scholar
  16. N. B. Nichols, “The linear properties of pneumatic transmission lines,” ISA Transactions, vol. 1, no. 1, pp. 23–32, 1962. View at Google Scholar
  17. D. A. P. Jayasinghe, M. S. Letelier, and H. J. Leutheusser, “Frequency-dependent friction in oscillatory laminar pipe flow,” International Journal of Mechanical Sciences, vol. 16, no. 11, pp. 819–827, 1974. View at Google Scholar · View at Scopus
  18. W. Zielke, “Frequency-dependent-friction in transient pipe flow,” Journal of Fluids Engineering, Transactions of the ASME, vol. 90, no. 1, pp. 109–115, 1968. View at Google Scholar
  19. K. Suzuki, T. Taketomi, and S. Sato, “Improving Zielke's method of simulating frequency-dependent friction in laminar liquid pipe flow,” Journal of Fluids Engineering, Transactions of the ASME, vol. 113, no. 4, pp. 569–573, 1991. View at Google Scholar · View at Scopus
  20. M. C. P. Brunelli, “Two-dimensional pipe model for laminar flow,” Journal of Fluids Engineering, Transactions of the ASME, vol. 127, no. 3, pp. 431–437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. V. P. Kuznetsov, “Equations of nonlinear acoustics,” Soviet Physics. Acoustics, vol. 16, pp. 467–470, 1971. View at Google Scholar
  22. D. T. Blackstock, “Propagation of plane sound waves of finite amplitude in nondissipative fluids,” Journal of the Acoustical Society of America, vol. 34, pp. 9–30, 1962. View at Google Scholar · View at MathSciNet
  23. W. Chester, “Acoustic resonance in spherically symmetric waves,” Proceedings of the Royal Society A, vol. 434, pp. 459–463, 1991. View at Google Scholar
  24. P. E. Doak and P. G. Vaidya, “Attenuation of plane wave and higher order mode sound propagation in lined ducts,” Journal of Sound and Vibration, vol. 12, no. 2, pp. 201–224, 1970. View at Google Scholar · View at Scopus
  25. W. Eversman, “Approximation for thin boundary layers in the sheared flow duct transmission problem,” Journal of the Acoustical Society of America, vol. 53, no. 5, pp. 1346–1350, 1973. View at Google Scholar · View at Scopus
  26. S. H. Ko, “Theoretical prediction of sound attenuation in acoustically lined annular ducts in the presence of uniform flow and shear flow,” Journal of the Acoustical Society of America, vol. 54, no. 6, pp. 1592–1606, 1973. View at Google Scholar · View at Scopus
  27. S. D. Savkar, “Propagation of sound in ducts with shear flow,” Journal of Sound and Vibration, vol. 19, no. 3, pp. 355–372, 1971. View at Google Scholar · View at Scopus
  28. P. N. Shankar, “Sound propagation in duct shear layers,” Journal of Sound and Vibration, vol. 22, no. 2, pp. 221–232, 1972. View at Google Scholar · View at Scopus
  29. M. N. Mikhail and A. N. Abdelhamid, “Transmission and far field radiation of sound waves in and from lined ducts containing shear flow,” AIAA Paper No. 73-1013, 1973.
  30. P. N. Shankar, “Acoustic refraction and attenuation in cylindrical and annular ducts,” Journal of Sound and Vibration, vol. 22, no. 2, pp. 233–246, 1972. View at Google Scholar · View at Scopus
  31. W. Eversman, “The effect of boundary layer on the transmission and attenuation of sound in an acoustically treated circular duct,” Journal of the Acoustical Society of America, vol. 49, no. 5, pp. 1572–1580, 1971. View at Google Scholar
  32. W. Eversman, “Representation of a 1/Nth power law boundary layer in the sheared flow acoustic transmission problem,” Journal of Sound and Vibration, vol. 24, no. 4, pp. 459–469, 1972. View at Google Scholar · View at Scopus
  33. N. K. Agarwal and M. K. Bull, “Acoustic wave propagation in a pipe with fully developed turbulent flow,” Journal of Sound and Vibration, vol. 132, no. 2, pp. 275–298, 1989. View at Google Scholar · View at Scopus
  34. D. M. Auslander, Frequency response of fluid lines with turbulent flow [SM thesis], Engineering Projects Laboratory, Massachusetts Institute of Technology, 1964.
  35. B. Brunone, U. M. Golia, and M. Greco, “Effects of two-dimensionality on pipe transients modeling,” Journal of Hydraulic Engineering, vol. 121, no. 12, pp. 906–912, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Brunone, B. W. Karney, M. Mecarelli, and M. Ferrante, “Velocity profiles and unsteady pipe friction in transient flow,” Journal of Water Resources Planning and Management, vol. 126, no. 4, pp. 236–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. F. T. Brown, D. L. Margolis, and R. P. Shah, “Small amplitude frequency behavior of fluid lines with turbulent flow,” Journal of Fluids Engineering, vol. 91, no. 4, pp. 678–693, 1969. View at Google Scholar
  38. A. K. Mitra and W. T. Rouleau, “Radial and axial variations in transient pressure waves transmitted through liquid transmission lines,” Journal of Fluids Engineering, Transactions of ASME, vol. 107, no. 1, pp. 105–111, 1985. View at Google Scholar · View at Scopus
  39. S. Stuckenbruck, D. C. Wiggert, and R. S. Otwell, “The influence of pipe motion on acoustic wave propagation,” Journal of Fluids Engineering, Transactions of the ASME, vol. 107, no. 4, pp. 518–522, 1985. View at Google Scholar · View at Scopus
  40. Y. Sato and H. Kanki, “Formulas for compression wave and oscillating flow in circular pipe,” Applied Acoustics, vol. 69, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Sato and H. Kanki, “Simplification of formulas for compression wave and oscillating flow in circular pipe,” Applied Acoustics, vol. 69, no. 10, pp. 901–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Isambourg, B. T. Anfinsen, and C. Marken, “Volumetric behavior of drilling muds at high pressure and high temperature,” in Proceedings of the European Petroleum Conference, pp. 157–165, October 1996. View at Scopus
  43. E. Karstad and B. S. Aadnoy, “Density behavior of drilling fluids during high pressure high temperature drilling operations,” in Proceedings of the IADC/SPE Asia Pacific Drilling Technology, Jakarta, Indonesia, 1998.
  44. E. J. Peters, M. E. Chenevert, and C. Zhang, “Model for predicting the density of oil-based muds at high pressures and temperatures,” SPE Drilling Engineering, vol. 5, no. 2, pp. 141–148, 1990. View at Google Scholar · View at Scopus
  45. A. R. Hasan and C. S. Kabir, “Wellbore heat-transfer modeling and applications,” Journal of Petroleum Science and Engineering, vol. 86-87, pp. 127–136, 2012. View at Google Scholar
  46. C. S. Kabir, A. R. Hasan, G. E. Kouba, and M. M. Ameen, “Determining circulating fluid temperature in drilling, workover, and well-control operations,” SPE Drilling and Completion, vol. 11, no. 2, pp. 74–78, 1996. View at Google Scholar · View at Scopus
  47. M. Ferrante, B. Brunone, and S. Meniconi, “Wavelets for the analysis of transient pressure signals for leak detection,” Journal of Hydraulic Engineering, vol. 133, no. 11, pp. 1274–1282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Ferrante, B. Brunone, and S. Meniconi, “Leak detection in branched pipe systems coupling wavelet analysis and a Lagrangian model,” Journal of Water Supply, vol. 58, no. 2, pp. 95–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. R. Hasan and C. S. Kabir, “Aspects of wellbore heat transfer during two-phase flow,” SPE Production & Facilities, vol. 9, no. 3, pp. 211–216, 1994. View at Google Scholar · View at Scopus