Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 260514, 14 pages
http://dx.doi.org/10.1155/2013/260514
Research Article

Performance of an Ocean Energy Conversion System with DFIG Sensorless Control

1Department of Automatic Control and Systems Engineering, EUITI de Bilbao, University of the Basque Country (UPV/EHU), Rafael Moreno 3, 48013 Bilbao, Spain
2Department of Automatic Control and Systems Engineering, EUI de Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain

Received 24 February 2013; Accepted 21 May 2013

Academic Editor: Massimo Scalia

Copyright © 2013 I. Garrido et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Z. Jacobson and M. A. Delucchi, “Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials,” Energy Policy, vol. 39, no. 3, pp. 1154–1169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Z. Jacobson and M. A. Delucchi, “Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials,” Energy Policy, vol. 39, no. 3, pp. 1154–1169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Basque Energy Board (EVE), http://www.eve.es/Promocion-de-inversiones/Proyectos-en-desarrollo/Mutriku/Instalaciones.aspx.
  4. Y. Torre-Enciso, Mutriku Wave Power Plant: From Conception to Reality, European Federation of Regional Energy and Environment Agencies (FEDARENE), 2009, http://www.fedarene.org/documents/projects/Nereida/Document/01_Mutriku-OWC_plant.pdf.
  5. A. Thakker and R. Abdulhadi, “Effect of blade profile on the performance of wells turbine under unidirectional sinusoidal and real sea flow conditions,” International Journal of Rotating Machinery, vol. 2007, Article ID 51598, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Setoguchi and M. Takao, “Current status of self rectifying air turbines for wave energy conversion,” Energy Conversion and Management, vol. 47, no. 15-16, pp. 2382–2396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Qiao, G. K. Venayagamoorthy, and R. G. Harley, “Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators,” IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 98–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Amundarain, M. Alberdi, A. J. Garrido, and I. Garrido, “Modeling and simulation of wave energy generation plants: output power control,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 105–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhou, J. Lian, T. Ma, and W. Wang, “Design for motor controller in hybrid electric vehicle based on vector frequency conversion technology,” Mathematical Problems in Engineering, vol. 2010, Article ID 627836, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. J. Astrom and T. Hagglund, Advanced PID Control, ISA-The Instrumentation, Systems, and Automation Society, 2009.
  11. R. Vilanova, V. M. Alfaro, O. Arrieta, and C. Pedret, “Analysis of the claimed robustness for PI/PID robust tuning rules,” in Proceedings of the 18th Mediterranean Conference on Control and Automation (MED '10), pp. 658–662, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. C. Rabelo Jr., W. Hofmann, J. L. da Silva, R. G. de Oliveira, and S. R. Silva, “Reactive power control design in doubly fed induction generators for wind turbines,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 4154–4162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. ESB National Grid, “Discussion Document for the Review of Requirements for Wind Turbine Generators Under System Fault Conditions,” 2003.
  14. I. Serban, F. Blaabjerg, I. Boldea, and Z. Chen, A Study of Doubly Fed Wind Power Generator Under Power System Faults, EPE, Toulouse, France, 2003.
  15. G. Iwanski and W. Koczara, “DFIG-based power generation system with UPS function for variable-speed applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 3047–3054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Abad, M. Á. Rodríguez, G. Iwanski, and J. Poza, “Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 442–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Garrido, I. Garrido, M. Amundarain, and M. Alberdi, “Sliding-mode control of wave power generation plants,” IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2372–2381, 2012. View at Google Scholar
  18. Z. Krzeminski, “New speed observer for control system of induction motor,” in Proceedings of the 3rd IEEE International Conference on Power Electronics and Drive Systems (PEDS '99), pp. 555–560, July 1999. View at Scopus
  19. Z. Krzemiński, “Observer of induction motor speed based on exact disturbance model,” in Proceedings of the 13th International Power Electronics and Motion Control Conference (EPE-PEMC '08), pp. 2294–2299, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Barambones, P. Alkorta, A. J. Garrido, I. Garrido, and F. J. Maseda, “An adaptive sliding mode control scheme for induction motor drives,” International Journal of Circuits, Systems and Signal Processing, vol. 1, no. 1, pp. 73–78, 2007. View at Google Scholar
  21. O. Barambones and A. J. Garrido, “An adaptive variable structure control law for sensorless induction motors,” European Journal of Control, vol. 13, no. 4, pp. 282–392, 2007. View at Google Scholar
  22. J. C. Garcıa, C. Diego, P. F. de Arróyabe, C. Garmendia, and D. Rasilla, El Clima Entre el Mar y la Montaña, The University of Cantabria, Santander, Spain, 2004.
  23. I. Galparsoro et al., “atlas de energía dek oleaje en la costa Vasca. La planificación espacial marian como herramienta en la selección de zonas adecuadas para la instalacion de captadores,” in Revista De Investigación Marina, pp. 1–9, 2008. View at Google Scholar
  24. W. K. Tease, J. Lees, and A. Hall, “Advances in oscillating water column air turbine development,” in Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 2007.
  25. M. Alberdi, M. Amundarain, A. J. Garrido, I. Garrido, O. Casquero, and M. De La Sen, “Complementary control of oscillating water column-based wave energy conversion plants to improve the instantaneous power output,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1021–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Torre-Enciso, I. Ortubia, L. I. López de Aguileta, and J. Marqués, “Mutriku wave power plant: from the thinking out to the reality,” in Proceedings of the 8th European Wave and Tidal Energy Conference, pp. 319–329, 2009.
  27. A. El Marjani, F. Castro Ruiz, M. A. Rodriguez, and M. T. Parra Santos, “Numerical modelling in wave energy conversion systems,” Energy, vol. 33, no. 8, pp. 1246–1253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Amundarain, M. Alberdi, A. J. Garrido, I. Garrido, and J. Maseda, “Wave energy plants: control strategies for avoiding the stalling behaviour in the Wells turbine,” Renewable Energy, vol. 35, no. 12, pp. 2639–2648, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Guglielmi, R. Bojoi, G. Pellegrino, A. Cavagnino, M. Pastorelli, and A. Boglietti, “High speed sensorless control for induction machines in vacuum pump application,” in Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON '11), pp. 1872–1878, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Cárdenas, R. Peña, G. Asher, J. Clare, and J. Cartes, “MRAS observer for doubly fed induction machines,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 467–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Cárdenas, R. Peña, J. Clare, G. Asher, and J. Proboste, “MRAS observers for sensorless control of doubly-fed induction generators,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1075–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Mueller, M. Deicke, and R. W. De Doncker, “Adjustable speed generators for wind turbines based on doubly-fed induction machines and 4-quadrant IGBT converters linked to the rotor,” in Proceedings of the 35th IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, vol. 4, pp. 2249–2254, October 2000. View at Scopus
  33. L. Morel, H. Godfroid, A. Mirzaian, and J. M. Kauffmann, “Double-fed induction machine: converter optimisation and field oriented control without position sensor,” IEE Proceedings of Electric Power Applications, vol. 145, no. 4, pp. 360–368, l998. View at Google Scholar
  34. H. R. Karimi and M. Chadli, “Robust observer design for Takagi-Sugeno fuzzy systems with mixed neutral and discrete delays and unknown inputs,” Mathematical Problems in Engineering, vol. 2012, Article ID 635709, 13 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  35. S. Chen, Y. F. Li, J. Zhang, and W. Wang, Active Sensor Planning for Multiview Vision Tasks, Springer, 2008.
  36. M. Alberdi, M. Amundarain, A. J. Garrido, I. Garrido, and F. J. Maseda, “Fault-ride-through capability of oscillating-water-column-based wave-power-generation plants equipped with doubly fed induction generator and airflow control,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1501–1517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Pena, J. C. Clare, and G. M. Asher, “A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine,” IEE Proceedings on Electric Power Applications, vol. 143, no. 3, pp. 231–241, 1996. View at Google Scholar
  38. B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, Englewood Cliffs, NJ, USA, 2001.
  39. I. Sarasola, J. Poza, M. A. Rodriguez, and G. Abad, “Direct torque control design and experimental evaluation for the brushless doubly fed machine,” Energy Conversion and Management, vol. 52, no. 2, pp. 1226–1234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Lagrioui and H. Mahmoudi, “Speed and current control for the PMSM using a Luenberger observer,” in Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS '11), April 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Trabelsi, M. Jouili, M. Boussak, Y. Koubaa, and M. Gossa, “Robustness and limitations of sensorless technique based on Luenberger state-Observer for induction motor drives under inverter faults,” in Proceedings f the IEEE International Symposium on Industrial Electronics (ISIE '11), pp. 716–721, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Sayed, M. Abdelfatah, M. Abdel-Salam, and S. Abou-Shadi, “Design of robust controller for vector controlled induction motor based on Q-parameterization theory,” Electric Power Components and Systems, vol. 30, no. 9, pp. 981–999, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Benosman, “A survey of some recent results on nonlinear fault tolerant control,” Mathematical Problems in Engineering, vol. 2010, Article ID 586169, 25 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  44. BOE 254/2006 P.O. 12.3 Response Requirements of Wind Power Generation to Network Voltage Dips.