Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 362601, 9 pages
http://dx.doi.org/10.1155/2013/362601
Research Article

Ameliorated Austenite Carbon Content Control in Austempered Ductile Irons by Support Vector Regression

1Department of Electrical Engineering, National Taipei University, San Shia District, New Taipei City 23741, Taiwan
2Mechanical Engineering and Chemical Technology, British Columbia Institute of Technology, BC, Canada
3Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Received 3 February 2013; Accepted 5 April 2013

Academic Editor: Chang-Hua Lien

Copyright © 2013 Chan-Yun Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. B. Rundman, D. J. Moore, K. L. Hayrynen, W. J. Dubensky, and T. N. Rouns, “The microstructure and mechanical properties of austempered ductile iron,” Journal of Heat Treating, vol. 5, no. 2, pp. 79–95, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Shea and E. F. Ryntz, “Austempering nodular iron for optimum toughness,” AFS Transactions, vol. 94, pp. 683–688, 1986. View at Google Scholar
  3. R. C. Voigt and C. R. Loper, “Austempered ductile iron-process control and quality assurance,” Journal of Heat Treating, vol. 3, no. 4, pp. 291–309, 1984. View at Publisher · View at Google Scholar · View at Scopus
  4. K. L. Hayrynen, K. R. Brandenberg, and J. R. Keough, “Applications of austempered cast irons,” Transaction-American Foundrymens Society, vol. 2, pp. 929–938, 2002. View at Google Scholar
  5. T. R. Uma, J. B. Simha, and K. N. Murthy, “Influence of nickel on mechanical and slurry erosive wear behaviour of permanent moulded toughened austempered ductile iron,” Wear, vol. 271, no. 9-10, pp. 1378–1384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Sahin, M. Erdogan, and V. Kilicli, “Wear behavior of austempered ductile irons with dual matrix structures,” Materials Science and Engineering A, vol. 444, no. 1-2, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Laino, J. A. Sikora, and R. C. Dommarco, “Development of wear resistant carbidic austempered ductile iron (CADI),” Wear, vol. 265, no. 1-2, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. C. Chang, I. C. Hsui, L. H. Chen, and T. S. Lui, “A study on particle erosion behavior of ductile irons,” Scripta Materialia, vol. 52, no. 7, pp. 609–613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Venkatesan, M. A. Venkatasamy, T. A. Bhaskaran, E. S. Dwarakadasa, and M. Ravindran, “Corrosion of ferrous alloys in deep sea environments,” British Corrosion Journal, vol. 37, no. 4, pp. 257–266, 2002. View at Google Scholar · View at Scopus
  10. J. Hemanth, “Solidification and corrosion behaviour of austempered chilled ductile iron,” Journal of Materials Processing Technology, vol. 101, no. 1, pp. 159–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. H. Hsu, J. K. Lu, and R. J. Tsai, “Characteristics of duplex surface coatings on austempered ductile iron substrates,” Surface and Coatings Technology, vol. 200, no. 20-21, pp. 5725–5732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Krawiec, B. Stypuła, J. Stoch, and M. Mikołajczyk, “Corrosion behaviour and structure of the surface layer formed on austempered ductile iron in concentrated sulphuric acid,” Corrosion Science, vol. 48, no. 3, pp. 595–607, 2006. View at Publisher · View at Google Scholar
  13. T. N. Rouns, K. B. Rundman, and D. M. Moore, “On structure and properties of austempered ductile cast iron,” AFS Transactions, vol. 92, pp. 815–840, 1984. View at Google Scholar
  14. L. C. Chang, “An analysis of retained austenite in austempered ductile iron,” Metallurgical and Materials Transactions A, vol. 34, no. 2, pp. 211–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. L. C. Chang, “Carbon content of austenite in austempered ductile iron,” Scripta Materialia, vol. 39, no. 1, pp. 35–38, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. H. K. D. H. Bhadeshia and D. V. Edmonds, “The mechanism of bainite formation in steels,” Acta Metallurgica, vol. 28, no. 9, pp. 1265–1273, 1980. View at Publisher · View at Google Scholar · View at Scopus
  17. L. C. Chang, I. C. Hsui, L. H. Chen, and S. T. Lui, “Influence of austenization temperature on the erosion behavior of austempered ductile irons,” Journal of University of Science and Technology Beijing, vol. 15, no. 1, pp. 29–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Putatunda and P. K. Gadicherla, “Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure,” Materials Science and Engineering A, vol. 268, no. 1-2, pp. 15–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Darwish and R. Elliott, “Austempering of low manganese ductile iron, part II influence of austenitising temperature,” Materials Science and Technology, vol. 9, pp. 586–602, 1993. View at Publisher · View at Google Scholar
  20. F. Neumann, Research in Cast Iron, Gordon & Breach, London, UK, 1965, Edited by H. D. Merchant.
  21. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2002.
  22. V. Štruc, J. Žibert, and N. Pavešić, “Histogram remapping as a preprocessing step for robust face recognition,” WSEAS Transactions on Information Science and Applications, vol. 6, no. 3, pp. 520–529, 2009. View at Google Scholar · View at Scopus
  23. E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across the sciences: keys and clues,” BioScience, vol. 51, no. 5, pp. 341–352, 2001. View at Google Scholar · View at Scopus
  24. Y. B. Gong and S. F. Chen, “Gray cast iron strength prediction model based on support vector machine,” Zhuzao/Foundry, vol. 55, no. 7, pp. 711–714, 2006. View at Google Scholar · View at Scopus
  25. X. Tang, L. Zhuang, and C. Jiang, “Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization,” Expert Systems with Applications, vol. 36, no. 9, pp. 11853–11857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, H. Yu, Z. Gao, and P. Li, “Improved online prediction of silicon content in iron making process using support vector regression with novel outlier detection,” Advanced Materials Research, vol. 154-155, pp. 251–255, 2011. View at Google Scholar
  27. V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998. View at MathSciNet
  28. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995. View at MathSciNet
  29. V. Vapnik, S. E. Golowich, and A. J. Smola, “Support vector method for function approximation, regression estimation, and signal processing,” in Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9, pp. 281–287, MIT Press, Cambridge, Mass, USA, 1997. View at Google Scholar
  30. H. Drucker, C. J. C. Burges, and L. Kaufman, “Support vector regression machines,” in Advances in Neural Information Processing System, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9, pp. 155–161, MIT Press, Cambridge, Mass, USA, 1997. View at Google Scholar
  31. B. Schölkopf, P. L. Bartlett, A. Smola, and R. Williamson, “Support vector regression with automatic accuracy control,” in Proceedings of the 8th International Conference on Artificial Neural Networks, pp. 111–116, 1998.
  32. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Tech. Rep. NeuroCOLT, NC-TR-98-030, University of London, London, UK, 1998. View at Google Scholar
  33. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  34. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cambridge, Mass, USA, 2002.
  36. R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication, John Wiley & Sons, Chichester, UK, 2nd edition, 1987. View at MathSciNet
  37. T. N. Rouns and K. B. Rundman, “Constitution of austempered ductile iron and kinetics of austempering,” AFS Transactions, vol. 95, pp. 851–874, 1987. View at Google Scholar
  38. K. B. Rundman and R. C. Klug, “An X-ray and metallographic study of an austempered ductile cast iron,” AFS Transactions, vol. 90, pp. 499–508, 1982. View at Google Scholar
  39. J. D. Verhoeven, A. EI Nagar, B. EI Sarnagawa, and D. P. Cornwell, “A study of austempered ductile cast iron,” in Proceedings of the Physical Metallurgy of Cast Iron, Materials Research Society Symposium, H. Fredriksson and M. Hillert, Eds., vol. 34, p. 387, 1985.
  40. G. Grech and J. M. Young, “Effect of Austenitising temperature on tensile properties of Cu-Ni austempered ductile iron,” Materials Science and Technology, vol. 6, pp. 415–421, 1990. View at Publisher · View at Google Scholar
  41. N. Darwish and R. Elliott, “Austempering of low manganese ductile irons—part 1: processing window,” Materials Science and Technology, vol. 9, pp. 572–586, 1993. View at Publisher · View at Google Scholar
  42. H. Nieswaag and J. W. Nijhof, “Influence of silicon on bainite transformation in ductile iron, relation to mechanical properties,” in Proceedings of the Physical Metallurgy of Cast Iron, Materials Research Society Symposium, H. Fredriksson and M. Hillert, Eds., vol. 34, pp. 411–415, 1985.
  43. E. Dorazil, High Strength Austempered Ductile Cast Iron, E. Horwood, New York, NY, USA, 1991.
  44. J. Aranzabal, I. Gutierrez, J. M. Rodriguez-Ibabe, and J. J. Urcola, “Influence of heat treatments on microstructure and toughness of austempered ductile iron,” Materials Science and Technology, vol. 8, no. 3, pp. 263–273, 1992. View at Publisher · View at Google Scholar · View at Scopus