Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 404978, 7 pages
http://dx.doi.org/10.1155/2013/404978
Research Article

Visual Object Tracking Based on 2DPCA and ML

1School of Information & Communication Engineering, Dalian Nationalities University, Dalian 116600, China
2School of Information & Communication Engineering, Dalian University of Technology, Dalian 116600, China

Received 7 March 2013; Accepted 23 May 2013

Academic Editor: Yudong Zhang

Copyright © 2013 Ming-Xin Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Computing Surveys, vol. 38, no. 4, pp. 229–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. X. Jiang, Z. J. Shao, and H. Y. Wang, “Real-time object tracking algorithm with cameras mounted on moving platforms,” International Journal of Image and Graphics, vol. 12, no. 3, Article ID 1250020, 2012. View at Google Scholar
  3. M. Jiang, M. Li, and H. Wang, “A robust combined algorithim of object tracking based on moving object detection,” in Proceedings of the International Conference on Intelligent Control and Information Processing (ICICIP '10), pp. 619–622, Dalian, China, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Zhang, P. Zhu, Q. Hu, and D. Zhang, “A linear subspace learning approach via sparse coding,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 755–761, Barcelona, Spain, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. X. Jiang, M. Li, and H. Y. Wang, “Object tracking algorithm based on projection matrix,” Journal of Convergence Information Technology, vol. 7, pp. 209–217, 2012. View at Google Scholar
  6. X. Mei and H. Ling, “Robust visual tracking and vehicle classification via sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2259–2272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Han, J. Jiao, B. Zhang, Q. Ye, and J. Liu, “Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR),” Pattern Recognition, vol. 44, no. 9, pp. 2170–2183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991. View at Google Scholar · View at Scopus
  9. J. H. Yin, C. Y. Fu, and J. K. Hu, “Using incremental subspace and contour template for object tracking,” Journal of Network and Computer Applications, vol. 35, pp. 1740–1748, 2012. View at Google Scholar
  10. D. Wang, H. Lu, and X. Li, “Two dimensional principal components of natural images and its application,” Neurocomputing, vol. 74, no. 17, pp. 2745–2753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. L. Donoho, “For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution,” Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp. 797–829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, “Toward a practical face recognition system: robust alignment and illumination by sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp. 372–386, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Meng, L. Zhang, J. Yang, and D. Zhang, “Robust sparse coding for face recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 625–632, Colorado Springs, Colo, USA, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative representation: which helps face recognition?” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 471–478, Barcelona, Spain, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Chiang, C. Duan, S. Lai, and S. Chang, “Learning component-level sparse representation using histogram information for image classification,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '11), pp. 1519–1526, Barcelona, Spain, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising via dictionary learning and structural clustering,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 457–464, Barcelona, Spain, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based tracking using the integral histogram,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), pp. 798–805, New York, USA, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust visual tracking,” International Journal of Computer Vision, vol. 77, no. 1–3, pp. 125–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Babenko, M. H. Yang, and S. Belongie, “Visual tracking with online multiple instance learning,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR '09), pp. 983–990, Miami, Fla, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N learning: bootstrapping binary classifiers by structural constraints,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 49–56, San Francisco, Calif, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 1269–1276, San Francisco, Calif, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus